Understanding the chemistry of ionic liquids for nuclear fuel reprocessing

September 11, 2006

SAN FRANCISCO, CA - With the rising cost and dwindling supply of fossil fuels, nuclear power may again be considered a plausible energy option in the U.S. Safety is the public's major concern, and researchers at the U.S. Department of Energy's Brookhaven National Laboratory are addressing one important aspect of that issue by investigating materials called ionic liquids. If these liquid salts were to be used in nuclear fuel reprocessing - the chemical removal of reusable nuclear material from spent nuclear reactor fuel - the risk of unintended nuclear chain reactions may be substantially reduced.

At the 232nd national meeting of the American Chemical Society in San Francisco, Brookhaven Lab chemist James Wishart will present his research on how ionic liquids containing the element boron react with radiation. His talk will be given at the Grand Hyatt Hotel's Dolores Room on Monday, September 11, at 3:20 p.m. Pacific Time.

Ionic liquids, which contain only electrically charged molecules known as ions, have several properties that make them attractive as an alternative medium for nuclear fuel reprocessing. These include low volatility, low combustibility, and resistance to being electrochemically oxidized or reduced. In 2001, researchers at DOE's Los Alamos National Laboratory calculated that reprocessing plutonium in boron-containing ionic liquids could substantially reduce the risk of nuclear accidents that involve unintended chain reactions. A particular isotope of boron can "poison" a chain reaction by strongly absorbing the neutrons that propagate the chain.

"Compared to current aqueous systems used for reprocessing plutonium, boron-containing ionic liquids can hold up to a hundred times more dissolved plutonium before reaching the critical threshold - that is, before the plutonium sustains a nuclear chain reaction," Wishart said. "Thus, there would be far less chance of an accident."

There are several ways to include boron in ionic liquids. One direct way is to make ionic liquids using negatively charged ions, called anions, that contain boron. This method may not produce a liquid with the melting point or viscosity needed. Another way is to add a material containing a lot of boron - for example, carborane - to an ionic liquid with the desired melting point, viscosity and other properties.

Brookhaven's Wishart and former postdoctoral researchers Tomasz Szreder and Alison Funston, with collaborators from the University of California, Riverside, have investigated the radiation chemistry of ionic liquids prepared from carborane and a boron-containing anion. They found that electrons ejected from molecules by radiation leads to decomposition of the carborane. To prevent this decomposition, the researchers propose including positively charged ions, like pyridinium, that can intercept the electrons before they react with the carborane. The reactions are reversible so the materials can be used over and over again.

"In U.S. nuclear power reactors, the fuel is only used once-through and a lot of energy remains in the spent fuel that is destined for disposal," Wishart said. "In the future, we may instead reprocess fuel to use in current reactors and in a new type of reactor now under development. We would extract more energy from the same amount of natural resources and produce less nuclear waste. Advanced reprocessing would also reduce long-lived radioactive waste. The ionic liquids that we study could be a better medium for reprocessing nuclear fuel and nuclear waste than the currently used media."
DOE's Office of Basic Energy Sciences within the Office of Science and Brookhaven's Laboratory Directed Research and Development Program funded this research.

Note to local editors: James Wishart lives in Wading River, New York.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom

DOE/Brookhaven National Laboratory

Related Radiation Articles from Brightsurf:

Sheer protection from electromagnetic radiation
A printable ink that is both conductive and transparent can also block radio waves.

What membrane can do in dealing with radiation
USTC recently found that polymethylmethacrylate (PMMA) and polyvinyl chloride (PVC) can release acidic substance under γ radiation, whose amount is proportional to the radiation intensity.

First measurements of radiation levels on the moon
In the current issue (25 September) of the prestigious journal Science Advances, Chinese and German scientists report for the first time on time-resolved measurements of the radiation on the moon.

New biomaterial could shield against harmful radiation
Northwestern University researchers have synthesized a new form of melanin enriched with selenium.

A new way to monitor cancer radiation therapy doses
More than half of all cancer patients undergo radiation therapy and the dose is critical.

Nimotuzumab-cisplatin-radiation versus cisplatin-radiation in HPV negative oropharyngeal cancer
Oncotarget Volume 11, Issue 4: In this study, locally advanced head and neck cancer patients undergoing definitive chemoradiation were randomly allocated to weekly cisplatin - radiation {CRT arm} or nimotuzumab -weekly cisplatin -radiation {NCRT arm}.

Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.

Radiation breaks connections in the brain
One of the potentially life-altering side effects that patients experience after cranial radiotherapy for brain cancer is cognitive impairment.

Fragmenting ions and radiation sensitizers
The anti-cancer drug 5-fluorouracil (5FU) acts as a radiosensitizer: it is rapidly taken up into the DNA of cancer cells, making the cells more sensitive to radiotherapy.

'Seeing the light' behind radiation therapy
Delivering just the right dose of radiation for cancer patients is a delicate balance in their treatment regime.

Read More: Radiation News and Radiation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.