Genome-wide hunts reveal new regulators of blood pressure

September 11, 2011

A study involving more than 200,000 people worldwide has identified 29 DNA sequence variations in locations across the human genome that influence blood pressure. These genes, whose sequence changes are associated with alterations in blood pressure and are linked to heart disease and stroke, were found with the help of decades' worth of population data that were pooled and analyzed by a large international consortium, including Johns Hopkins researchers.

Among the findings was evidence that the same common genetic variants associated with hypertension in European populations also are frequently found in individuals of Asian and African ancestry, according to the report that appears September 11 in Nature.

"A genetic risk score that adds up the effects of all of these variants shows that the more of these variants an individual has, the greater are his or her chances of having hypertension, left ventricular wall thickness, stroke and coronary artery disease," says Aravinda Chakravarti, Ph.D., a professor of medicine, pediatrics and molecular biology and genetics at the McKusick-Nathans Institute of Genetic Medicine at Johns Hopkins, and one of the lead authors.

The individuals whose genomes were analyzed for this study had their blood pressures recorded when they originally entered other long-term cardiovascular research studies, and scientists used these measures to assess the predictive value of the genes and blood pressures in terms of the subjects' current cardiovascular status.

This genome-wide association study focused on systolic and diastolic blood pressures: measures of the maximum and minimum pressures exerted on the arteries. However, in a related genome-wide investigation reported September 11 in Nature Genetics, the same scientists found an additional six locations across the genome where variants affect blood pressure by focusing on two other relevant measures: pulse pressure (the difference between systolic and diastolic blood pressure) and mean arterial pressure (a weighted average of systolic and diastolic blood pressure). The group conducted a genome-wide association meta-analysis of pulse pressure and mean arterial pressure in 74,064 individuals of European ancestry from 35 studies and then followed up the results in 48,607 additional individuals.

"It's like using four different cops to find the same culprit," Chakravarti says. "The more ways we search for blood pressure genes, the better our ability to understand hypertension, whose affects are not uni-causal."

For the billion-plus people worldwide with hypertension, even small elevations in blood pressure are associated with increased risk of cardiovascular disease. Although it's generally known that hypertension has a familial component, the genetic regulatory mechanisms of blood pressure have been challenging to pin down so far, Chakravarti says, citing similar genetic studies three years ago that failed to detect any genes. He credits the recent spate of genetic discoveries - more than 300 genes for cardiovascular diseases have been identified in just the last few years - to the collective analyses of long-term prospective research efforts such as the pioneering Framingham Heart Study, begun in 1948, the Cardiovascular Heath Study, started in 1989, and the Atherosclerosis Risk in Communities (ARIC) study, started in 1987.

"Too often, people look at these studies that have a long provenance and wonder what is it doing for them today," says Chakravarti, who compares the studies to a retirement account. "Researchers visit them time and time again. Without them, this feat of genetic studies would be impossible."

Each genome-wide association study, often referred to as GWAS, reported what effects were observed at which locations on the genome in a scan of single nucleotide polymorphisms (SNPs) throughout the genome. Pronounced snips, SNPs are sites where a single letter in the DNA code is variable between humans.

"Your blood pressure is a function of these genes we just identified as well as perhaps a hundred others we haven't found yet," says Chakravarti. "By revealing the genetic architecture of blood pressure, both studies will help us to understand the biology of cardiovascular diseases and stroke, and, eventually, may lead to better therapies."
-end-
Support for the international, multi-institutional project came from many funding mechanisms, including the National Institutes of Health National Heart, Lung and Blood Institute as well as European and private funding agencies.

Of more than 230 scientists who contributed to the Nature study, Chakravarti is a corresponding author. The lead author is Georg B. Ehret, also of the institute. Other Johns Hopkins authors are Vasyl Pihur, Josef Coresh, Judith A. Hoffman-Bolton, Linda Kao, Anna Kottgen, and J.Hunter Young.

In addition to Chakravarti, Johns Hopkins scientists who contributed to the Nature Genetics study include Georg B. Ehret and Vasyl Pihur.

On the Web:
Chakravarti lab: http://chakravarti.igm.jhmi.edu/AravindaChakravartiLab/Home.html
Nature: http://www.nature.com/nature/index.html
Nature Genetics: http://www.nature.com/ng/index.html

Media Contacts: Maryalice Yakutchik; 443-287-2251; myakutc1@jhmi.edu
Audrey Huang; 410-614-5105; audrey@jhmi.edu
Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu

Johns Hopkins Medicine

Related Blood Pressure Articles from Brightsurf:

Children who take steroids at increased risk for diabetes, high blood pressure, blood clots
Children who take oral steroids to treat asthma or autoimmune diseases have an increased risk of diabetes, high blood pressure, and blood clots, according to Rutgers researchers.

High blood pressure treatment linked to less risk for drop in blood pressure upon standing
Treatment to lower blood pressure did not increase and may decrease the risk of extreme drops in blood pressure upon standing from a sitting position.

Changes in blood pressure control over 2 decades among US adults with high blood pressure
National survey data were used to examine how blood pressure control changed overall among U.S. adults with high blood pressure between 1999-2000 and 2017-2018 and by age, race, insurance type and access to health care.

Transient increase in blood pressure promotes some blood vessel growth
Blood vessels are the body's transportation system, carrying oxygen and nutrients to cells and whisking away waste.

Effect of reducing blood pressure medications on blood pressure control in older adults
Whether the amount of blood pressure medications taken by older adults could be reduced safely and without a significant change in short-term blood pressure control was the objective of this randomized clinical trial that included 534 adults 80 and older.

Brain blood flow sensor discovery could aid treatments for high blood pressure & dementia
A study led by researchers at UCL has discovered the mechanism that allows the brain to monitor its own blood supply, a finding in rats which may help to find new treatments for human conditions including hypertension (high blood pressure) and dementia.

Here's something that will raise your blood pressure
The apelin receptor (APJ) has been presumed to play an important role in the contraction of blood vessels involved in blood pressure regulation.

New strategy for treating high blood pressure
The key to treating blood pressure might lie in people who are 'resistant' to developing high blood pressure even when they eat high salt diets, shows new research published today in Experimental Physiology.

Arm cuff blood pressure measurements may fall short for predicting heart disease risk in some people with resistant high blood pressure
A measurement of central blood pressure in people with difficult-to-treat high blood pressure could help reduce risk of heart disease better than traditional arm cuff readings for some patients, according to preliminary research presented at the American Heart Association's Hypertension 2019 Scientific Sessions.

Heating pads may lower blood pressure in people with high blood pressure when lying down
In people with supine hypertension due to autonomic failure, a condition that increases blood pressure when lying down, overnight heat therapy significantly decreased systolic blood pressure compared to a placebo.

Read More: Blood Pressure News and Blood Pressure Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.