Discovery of blood pressure genes could help prevent cardiovascular disease

September 11, 2011

Findings, published today in Nature and Nature Genetics (11/9/2011) by the International Consortium for Blood Pressure Genome-Wide Association Studies represent a major advance in our understanding of the inherited influences on blood pressure and offer new potential therapeutic targets for prevention of heart disease and stroke - the biggest cause of death worldwide.

Research published in Nature and co-led by scientists from Queen Mary, University of London has discovered 16 new gene regions that influence blood pressure.

Toby Johnson, Patricia Munroe and Mark Caulfield from Barts and The London Medical School co-led with US and European colleagues an international collaborative study involving 351 scientists from 234 institutions based in 24 countries around the world. This study analysed data on over 270,000 people to find genetic variations in the DNA of each person that were associated with higher or lower blood pressure. This enabled them to identify 16 new gene regions influencing blood pressure and provided confirmation of 12 other gene regions that had previously been discovered by the Barts and The London team.

The researchers then combined the effects of genetic variation in all 28 gene regions and showed that these impact upon the risk of developing hypertension, stroke, coronary heart disease, and structural changes in the heart. The combined effect of these variations on blood pressure is similar to the effect of a standard blood pressure lowering medicine. Importantly, they showed that genetic effects on blood pressure are broadly similar in people of European, East Asian, South Asian, and African ancestries.

Blood pressure is influenced by a combination of lifestyle factors and genes which until now have proved challenging to identify. Even small changes in blood pressure can increase risk of stroke and heart attack and over one billion people worldwide have high blood pressure - hypertension.

Professor Mark Caulfield, who is also President of the British Hypertension Society, said: "High blood pressure affects a quarter of the adult population in the UK. These new gene regions we report today offer a major leap forward in our understanding of the inherited influences on blood pressure and offer new potential avenues for treatment which is particularly welcome for those who do not achieve optimal blood pressure control."

Professor Patricia Munroe said: "This large multicentre collaboration has yielded many new genes for blood pressure, determining which gene and their function will improve our understanding of the basic architecture of hypertension, and should facilitate new therapeutic drug development."

Dr Toby Johnson said: "There were enormous challenges to overcome in collecting and analysing the amount of data we needed for this study. Our discoveries illustrate the power of international collaborative research."

A related study published today, in Nature Genetics and co- led by Louise Wain and Martin Tobin from the University of Leicester, and Paul Elliott from Imperial College London, reports on the identification of gene regions for two further types of blood pressure measurement; pulse pressure (PP) and mean arterial pressure (MAP). Both measurements can predict hypertension and cardiovascular disease. The research uncovered four new gene regions for pulse pressure and two for mean arterial pressure indicating novel genetic mechanisms underlying blood pressure variation.

Louise Wain (University of Leicester) said: "Our study shows the importance of looking at different measures of blood pressure in order to identify new genetic variants that affect levels of blood pressure in the population."

Paul Elliott (Imperial College London) said: "Pulse pressure is a marker of the stiffness of the arteries that carry blood from the heart round the body. Our results could help understanding about the genetic mechanisms underlying relationships of pulse pressure with risk of heart disease and stroke."

These important findings published in Nature and Nature Genetics were made possible by funding from the Wellcome Trust, the Medical Research Council, the British Heart Foundation, and the National Institute for Health Research, and provide greater understanding of the genetic architecture of blood pressure, a key determinant of cardiovascular health.
-end-


Queen Mary University of London

Related Heart Disease Articles from Brightsurf:

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

New 'atlas' of human heart cells first step toward precision treatments for heart disease
Scientists have for the first time documented all of the different cell types and genes expressed in the healthy human heart, in research published in the journal Nature.

With a heavy heart: How men and women develop heart disease differently
A new study by researchers from McGill University has uncovered that minerals causing aortic heart valve blockage in men and women are different, a discovery that could change how heart disease is diagnosed and treated.

Heart-healthy diets are naturally low in dietary cholesterol and can help to reduce the risk of heart disease and stroke
Eating a heart-healthy dietary pattern rich in vegetables, fruits, whole grains, low-fat dairy products, poultry, fish, legumes, vegetable oils and nuts, which is also limits salt, red and processed meats, refined-carbohydrates and added sugars, is relatively low in dietary cholesterol and supports healthy levels of artery-clogging LDL cholesterol.

Pacemakers can improve heart function in patients with chemotherapy-induced heart disease
Research has shown that treating chemotherapy-induced cardiomyopathy with commercially available cardiac resynchronization therapy (CRT) delivered through a surgically implanted defibrillator or pacemaker can significantly improve patient outcomes.

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.

New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.

Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.

Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.

Read More: Heart Disease News and Heart Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.