Nav: Home

AI uses less than two minutes of videogame footage to recreate game engine

September 11, 2017

Game studios and enthusiasts may soon have a new tool at their disposal to speed up game development and experiment with different styles of play. Georgia Institute of Technology researchers have developed a new approach using an artificial intelligence to learn a complete game engine, the basic software of a game that governs everything from character movement to rendering graphics.

Their AI system watches less than two minutes of gameplay video and then builds its own model of how the game operates by studying the frames and making predictions of future events, such as what path a character will choose or how enemies might react.

To get their AI agent to create an accurate predictive model that could account for all the physics of a 2D platform-style game, the team trained the AI on a single "speedrunner" video, where a player heads straight for the goal. This made "the training problem for the AI as difficult as possible."

Their current work uses Super Mario Bros. and they've started replicating the experiments with Mega Man and Sonic the Hedgehog as well. The same team first used AI and Mario Bros. gameplay video to create unique game level designs.

The researchers found that their game engine predicted video frames significantly more similar to those in the original game when compared to the same test on a neural network. This gave them an accurate, general model of a game using only the video footage.

"Our AI creates the predictive model without ever accessing the game's code, and makes significantly more accurate future event predictions than those of convolutional neural networks," says Matthew Guzdial, lead researcher and Ph.D. student in computer science. "A single video won't produce a perfect clone of the game engine, but by training the AI on just a few additional videos you get something that's pretty close."

They next tested how well the cloned engine would perform in actual gameplay. They employed a second AI to play the game level and ensure the game's protagonist wouldn't fall through solid floors or go undamaged if hit by an enemy.

The results: the AI playing with the cloned engine proved indistinguishable compared to an AI playing the original game engine.

"The technique relies on a relatively simple search algorithm that searches through possible sets of rules that can best predict a set of frame transitions," says Mark Riedl, associate professor of Interactive Computing and co-investigator on the project. "To our knowledge this represents the first AI technique to learn a game engine and simulate a game world with gameplay footage.

The current cloning technique works well with games where much of the action happens on-screen. Guzdial says Clash of Clans or other games with action taking place off-screen might prove difficult for their system.

"Intelligent agents need to be able to make predictions about their environment if they are to deliver on the promise of advancing different technology applications," he says. "Our model can be used for a variety of tasks in training or education scenarios, and we think it will scale to many types of games as we move forward."
-end-
The research was presented at the International Joint Conference on Artificial Intelligence, Aug. 19-25, in Melbourne, Australia. The paper, "Game Engine Learning from Video," was authored by Matthew Guzdial, Boyang Li, and Mark Riedl.

Georgia Institute of Technology

Related Artificial Intelligence Articles:

Researchers rebuild the bridge between neuroscience and artificial intelligence
In an article in the journal Scientific Reports, researchers reveal that they have successfully rebuilt the bridge between experimental neuroscience and advanced artificial intelligence learning algorithms.
Artificial intelligence can help some businesses but may not work for others
The temptation for businesses to use artificial intelligence and other technology to improve performance, drive down labor costs, and better the bottom line is understandable.
Artificial intelligence could help predict future diabetes cases
A type of artificial intelligence called machine learning can help predict which patients will develop diabetes, according to an ENDO 2020 abstract that will be published in a special supplemental section of the Journal of the Endocrine Society.
Artificial intelligence for very young brains
Montreal's CHU Sainte-Justine children's hospital and the ÉTS engineering school pool their expertise to develop an innovative new technology for the segmentation of neonatal brain images.
Putting artificial intelligence to work in the lab
An Australian-German collaboration has demonstrated fully-autonomous SPM operation, applying artificial intelligence and deep learning to remove the need for constant human supervision.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Artificial intelligence and family medicine: Better together
Researcher at the University of Houston are encouraging family medicine physicians to actively engage in the development and evolution of artificial intelligence to open new horizons that make AI more effective, equitable and pervasive.
Artificial Intelligence to improve the precision of mammograms
The Artificial Intelligence techniques, used in combination with evaluations by expert radiologists, improve the precision in the detection of cancer through mammograms.
Using artificial intelligence to assess ulcerative colitis
Researchers from Tokyo Medical and Dental University (TMDU) have developed an artificial intelligence system with a deep neural network that can effectively evaluate endoscopic data from patients with ulcerative colitis, which is a type of inflammatory bowel disease, without the need for biopsy collection.
Robot uses artificial intelligence and imaging to draw blood
Rutgers engineers have created a tabletop device that combines a robot, artificial intelligence and near-infrared and ultrasound imaging to draw blood or insert catheters to deliver fluids and drugs.
More Artificial Intelligence News and Artificial Intelligence Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.