Nav: Home

A chameleon-inspired smart skin changes color in the sun

September 11, 2019

Some creatures, such as chameleons and neon tetra fish, can alter their colors to camouflage themselves, attract a mate or intimidate predators. Scientists have tried to replicate these abilities to make artificial "smart skins," but so far the materials haven't been robust. Now, researchers reporting in ACS Nano have taken a page from the chameleon's playbook to develop a flexible smart skin that changes its color in response to heat and sunlight.

The hues of chameleon skin rely not on dyes or pigments as most colors do, but instead on arrays of tiny structures known as photonic crystals. Light reflects from these microscopic surfaces and interferes with other beams of reflected light, producing a color. The hue changes when the distance between photonic crystals varies -- for example, when a chameleon tenses or relaxes its skin. To mimic these natural abilities, scientists have embedded photonic crystals in flexible materials, such as hydrogels, and changed their colors by contracting or expanding the material like an accordion. However, these large fluctuations in size can strain the materials and cause them to buckle. Khalid Salaita and colleagues wanted to take a closer look at chameleon skin and use what they learned to design a strain-accommodating smart skin.

By watching time-lapse images of chameleon skin, the researchers noticed that only a small fraction of skin cells actually contain photonic crystal arrays, while the rest are colorless. The team reasoned that the colorless cells might help accommodate the strain when the photonic crystals contract and expand. Inspired by this observation, the researchers patterned arrays of photonic crystals in a hydrogel and then embedded these arrays in a second, non-color-changing hydrogel that acted as a supporting layer. Upon heating, the resulting material changed color but remained the same size. The smart skin also altered its hue in response to natural sunlight, similar to how a tetra fish does. The new material could someday find applications in camouflage, signaling and anti-counterfeiting, the researchers say.
-end-
The authors acknowledge funding from the Defense Advanced Research Projects Agency Biological Technologies Office and the National Institutes of Health.

The paper's abstract will be available on September 11 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acsnano.9b04231

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter | Facebook

American Chemical Society

Related Camouflage Articles:

Fossil record analysis hints at evolutionary origins of insects' structural colors
Researchers from Yale-NUS College in Singapore and University College Cork have analyzed preserved scales from wing cases of two fossil weevils from the Late Pleistocene era to better understand the origin of light-scattering nanostructures present in present-day insects.
Ship noise hampers crab camouflage
Colour-changing crabs struggle to camouflage themselves when exposed to noise from ships, new research shows.
Squid brains approach that of dogs
We are closer to understanding the incredible ability of squid to instantly camouflage themselves thanks to research from The University of Queensland.
Brilliant iridescence can conceal as well as attract
A new study shows for the first time that the striking iridescent colours seen in some animals increase their chances of survival against predators by acting as a means of camouflage.
Jewel beetles' sparkle helps them hide in plain sight
Bright colors are often considered an evolutionary tradeoff in the animal kingdom.
Animals should use short, fast movements to avoid being located
Most animals need to move, whether this is to seek out food, shelter or a mate.
Animals reduce the symmetry of their markings to improve camouflage
Some forms of camouflage have evolved in animals to exploit a loophole in the way predators perceive their symmetrical markings.
The secret of mushroom colors
The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species.
Color change and behavior enable multi-colored chameleon prawns to survive
Chameleon prawns change color to camouflage themselves as the seaweed around them changes seasonally, new research shows.
Crabs' camouflage tricks revealed
Crabs from a single species rely on different camouflage techniques depending on what habitat they live in, new research shows.
More Camouflage News and Camouflage Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.