Nav: Home

Brain: How to optimize decision making?

September 11, 2019

Our brains are constantly faced with different choices: Should I have a chocolate éclair or macaroon? Should I take the bus or go by car? What should I wear: a woollen sweater or one made of cashmere? When the difference in quality between two choices is great, the choice is made very quickly. But when this difference is negligible, we can get stuck for minutes at a time - or even longer - before we're capable of making a decision. Why is it so difficult to make up our mind when faced with two or more choices? Is it because our brains are not optimised for taking decisions? In an attempt to answer these questions, neuroscientists from the University of Geneva (UNIGE), Switzerland, - in partnership with Harvard Medical School - developed a mathematical model of the optimal choice strategy. They demonstrated that optimal decisions must be based not on the true value of the possible choices but on the difference in value between them. The results, which you can read all about in the journal Nature Neuroscience, show that this decision-making strategy maximises the amount of reward received.

There are two types of decision-making: first, there is perceptual decision-making, which is based on sensory information: Do I have time to cross the road before that car comes nearer? Then there is value-based decision-making, when there is no good or bad decision as such but a choice needs to be made between several proposals: Do I want to eat apples or apricots? When taking value-based decisions, choices are made very quickly if there is a large difference in value between the different proposals. But when the propositions are similar, decision-making becomes very complex even though, in reality, none of the choices is worse than any other. Why is this?

The value of a choice lies in the difference

Satohiro Tajima, a researcher in the Department of Basic Neurosciences in UNIGE's Faculty of Medicine, designed a simple mathematical model that demonstrates the following: the optimal strategy when faced with two propositions is to sum up the values associated with the memories you have of each choice, then calculate the difference between these two sums (do I have more positive memories linked to chocolate eclairs or macaroons?). The decision is made when this difference reaches a threshold value, fixed in advance, which determines the time taken in making the decision. This model leads to rapid decision-making when the values of the two possibilities are very far apart. But when two choices have almost the same value, we need more time, because we need to draw on more memories so that this difference reaches the decision threshold. Is the same process at work when we have to choose between three or more possibilities?

The average of the values for each choice decides the winner

For each choice, we want to maximise the possible gain in the minimum amount of time. So, how do we proceed? «The first step is exactly the same as when making a binary choice: we amass the memories for each choice so we can estimate their combined value,» explains Alexandre Pouget, a professor in the Department of Basic Neurosciences at UNIGE. Then, using a mathematical model based on the theory of optimal scholastic control, instead of looking at the cumulative value associated with each choice independently, the decision rests on the difference between the cumulative value of each choice and the average value of the accumulated values over all the choices. As in the earlier case, the decision is made when one of these differences reaches a pre-determined threshold value. "The fact that the decision is based on the cumulative value minus the average of the values of all the possibilities explains why the choices interfere with each other, even when some differences are glaring,» continues professor Pouget.

If the different possible choices have similar values, the average will be almost identical to the value of each choice, resulting in a very lengthy decision-making time. «Making a simple choice can take 300 milliseconds but a complicated choice sometimes lasts a lifetime,» notes the Geneva-based researcher.

The UNIGE study shows that the brain does not make decisions according to the value of each opportunity but based on the difference between them. "This highlights the importance of the feeling of having to maximise the possible gains that can be obtained," says professor Pouget. The neuroscientists will now focus on how the brain revisits memory to call on the memories associated with every possible choice, and how it simulates information when faced with the unknown and when it cannot make a decision based on memories.
-end-


Université de Genève

Related Memories Articles:

A new discovery: How our memories stabilize while we sleep
Scientists at the Center for Interdisciplinary Research in Biology (CNRS/Collège de France/INSERM) have shown that delta waves emitted while we sleep are not generalized periods of silence during which the cortex rests, as has been described for decades in the scientific literature.
How memories form and fade
Caltech researchers identify the neural processes that make some memories fade rapidly while other memories persist over time.
Firework memories
Recently Weizmann Institute scientists succeeded in recording these rapid bursts of activity -- called 'hippocampal ripples' -- in the human brain, and they were able to demonstrate their importance as a neuronal mechanism underlying the engraving of new memories and their subsequent recall.
Your nose knows when it comes to stronger memories
Memories are stronger when the original experiences are accompanied by unpleasant odors, a team of researchers has found.
Proof it's possible to enhance or suppress memories
Boston University neuroscientist Steve Ramirez and collaborators have published a new paper showing memories are pliable if you know which regions of the brain's hippocampus to stimulate, which could someday enable personalized treatment for people with PTSD, depression and anxiety.
What makes memories stronger?
A team of scientists at NeuroElectronics Research Flanders (NERF- empowered by imec, KU Leuven and VIB) found that highly demanding and rewarding experiences result in stronger memories.
Like old photographs, memories fade over time
Past events are often vividly recollected. However, it remains unclear how the qualities of memories are reconstructed.
More than just memories: a new role for the hippocampus during learning
Without an intact hippocampus, forming new memories is impossible. Researchers from Arizona State University and Stanford University found an equally important role for the hippocampus: feeding information to brain areas responsible for learning.
Making moves and memories, are they connected?
Researchers report the first direct evidence that the cerebellum does more than just control muscle activity.
Lateral inhibition keeps similar memories apart
Our brains are able to store memories of very similar events as distinct memories.
More Memories News and Memories Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.