Nav: Home

Advanced breeding paves the way for disease-resistant beans

September 11, 2019

For many people in Africa and Latin America, beans are an important staple. Historically described as "the meat of the poor", beans are rich in protein and minerals, affordable and suitably filling. That is why they are served daily, often with several meals.

In many regions, however, plant diseases severely reduce bean yields. For example, the dreaded angular leaf spot disease can cause yield losses of up to 80 percent - especially in Africa, where smallholders rarely have the opportunity to protect their crops with fungicides.

Genomics-assisted breeding

Working with Bodo Raatz and his team at the International Center for Tropical Agriculture (CIAT), ETH researchers from the group led by Bruno Studer, Professor of Molecular Plant Breeding, investigated the resistance of beans to angular leaf spot disease. Their findings are now enabling disease-resistant bean varieties to be bred more rapidly and selectively for the world's various bean-producing regions.

Their method is built upon genome analyses of those beans that are potentially suitable for breeding new, resistant varieties. The resulting genetic profiles provide information as to whether the progeny from crossbreeding two varieties will be resistant to the pathogenic fungus's different, locally occurring strains (known as pathotypes).

Genetic profiles created for 316 varieties

Michelle Nay, who carried out the project as part of her doctoral thesis in Studer's group, started by gathering as many different bean seeds as possible from CIAT's seed repository. In total, she collected 316 different varieties that displayed characteristics suitable for breeding resistance to the fungus that causes angular leaf spot disease.

Next, Nay planted the beans from her collection in Uganda and Colombia, both in greenhouses and in the field. Her aim was to find out if and indeed how the different varieties react to the fungus's various pathotypes in each country, and then to identify the genetic basis of disease resistance.

Nay also created a high-resolution genetic profile for each of the 316 bean types based on variations in their DNA known as genetic markers, and identified which markers occurred only in the disease-resistant beans. She subsequently used these markers to predict which progeny would be resistant to which pathotypes in a given country, and which ones would be susceptible to disease.

Improvement on conventional plant breeding

"Our method speeds up the breeding process considerably," Studer says. It's a big step forward because crossbreeding had previously been a numbers game and involved testing every single plant for its resistance, he explains. Now, on the basis of a genetic test, it is possible to predict a plant's resistance without testing it in laborious field trials. "This is a huge help in bean breeding and great news for people who rely heavily on beans as a staple of their diet," Studer says.

The group's work to provide disease-resistant beans will also help to cut down on global pesticide use. As things stand today, Studer explains, fungicide use is common for bean cultivation in Latin America, but almost non-existent in Africa because many farmers don't have access to pesticides, or don't know how to use them safely and efficiently: "Disease-resistant beans are a double win: famers in Latin America can reduce their pesticide use while farmers in Africa can increase their crop yield pesticide-free."

Simple, inexpensive and open-source technology

CIAT distributes the seeds from this project to various sub-organisations who then supply them to breeders. The analytical method for determining genetic markers is relatively simple and inexpensive to apply, making it viable for use in agricultural laboratories in the countries concerned. It costs less than 0.2 CHF to test a genetic marker, Nay explains, which is an affordable amount for laboratories in less affluent countries. What's more, all the findings from this study are available through open access. "This way, our work reaches the people who really need these kind of resources," Nay emphasises.

Nay and Studer worked on this project in close collaboration with CIAT. The global research centre runs the largest breeding programme in the tropics and has several thousand varieties of bean in its seed repository. At its headquarters in Colombia, CIAT breeds new bean varieties, tests the seeds, and, in partnership with the Pan-Africa Bean Research Alliance, makes the seeds available to farmers for cultivation.

In collaboration with CIAT, Studer and his group will now conduct a follow-up project to refine their breeding method. While the researchers previously focused on markers for one specific disease, the new project will take a more holistic approach as they attempt to use such genome profiles to predict as many plant characteristics as possible.
-end-


ETH Zurich

Related Breeding Articles:

AI for plant breeding in an ever-changing climate
Oak Ridge National Laboratory's Dan Jacobson is currently working on numerous projects that form an integrated roadmap for the future of AI in plant breeding and bioenergy.
Rare 'itinerant breeding' behavior revealed in California bird
Only two bird species have ever been shown to undertake what scientists call 'itinerant breeding': nesting in one area, migrating to another region, and nesting again there within the same year, to take advantage of shifting food resources.
Advanced breeding paves the way for disease-resistant beans
ETH researchers are involved in the development and implementation of a method to efficiently breed for disease-resistant beans in different regions of the world.
How puffins catch food outside the breeding season
Little is known about how seabirds catch their food outside the breeding season but using modern technology, researchers at the University of Liverpool and the Centre for Ecology & Hydrology have gained new insight into their feeding habits.
New plant breeding technologies for food security
An international team, including researchers from the University of Göttingen, argues in a perspective article recently published in ''Science'' that new plant breeding technologies can contribute significantly to food security and sustainable development.
Breeding a better strawberry
An international team of scientists led by the University of California, Davis, and Michigan State University have sequenced and analyzed the genome of the cultivated strawberry, which will provide a genetic roadmap to help more precisely select desired traits.
Climate change affects breeding birds
The breeding seasons of wild house finches are shifting due to climate change, a Washington State University researcher has found.
Space-inspired speed breeding for crop improvement
Technology first used by NASA to grow plants extra-terrestrially is fast tracking improvements in a range of crops.
Breeding corn for water-use efficiency may have just gotten easier
With approximately 80 percent of our nation's water supply going towards agriculture, it's fair to say it takes a lot of water to grow crops.
Exploiting epigenetic variation for plant breeding
Epigenetic changes can bring about new traits without altering the sequence of genes.
More Breeding News and Breeding Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.