Nav: Home

Discovering biological mechanisms enabling pianists to achieve skillful fingering

September 11, 2019

In Japan Science and Technology Agency's Strategic Basic Research Programs, Dr. Masato Hirano of Sony Computer Science Laboratories and his colleagues discovered a sensorimotor function integration mechanism that enables the skillful fingering of pianists.

The tactile sensation signaled by the skin and the proprioceptive sensation (deep sensation) signaled by muscles and joints are collectively called somatosensory sensation. It has long been understood that somatosensory information plays an important role in movement control. However, how somatic sensation contributes to production of the skillful movements of pianists has not been elucidated.

The research group developed a system to produce tactile and proprioceptive sensation in the fingers with an electric current stimulator and an exoskeletal robot hand 1) and developed an assessment system that evaluated the processing of each neural information in the cerebral cortex using electroencephalogram measurements and transcranial magnetic stimulation 2). Using this system, expert pianists were found to have altered mechanisms by which tactile and proprioceptive sensation suppress the activity of the primary motor cortex 3) in a specialized manner (somatosensory-motor integration). This neuroplastic adaptation was associated with enhancement of speed and precision of finger movements in pianists.

This finding is expected to be useful in the development of techniques to identify factors necessary for acquiring proficiency in skills such as piano playing, tailor-made training methods that take individual differences into account, diagnostic methods for the early detection of neurological disorders where the function of fingers deteriorates due to excessive training, and in the development of rehabilitation methods.
-end-
Note 1) Exoskeletal robot hand

An attachable device, so called an exoskeleton, that mechanically moves the user's fingers using a motor.

Note 2) Transcranial magnetic stimulation (TMS)

Stimulation of the cerebral cortex with magnets that penetrate the skull without harming the body. Neural activity generated by stimulating the motor cortex noninvasively is transmitted to muscles, and the excitability of the motor cortex is estimated from the electric potential evoked in the muscle.

Note 3) Primary motor cortex

The final output layer of the brain that sends motor commands to muscles via the corticospinal tract. Excitation and inhibitory inputs are received from the primary somatosensory cortex (sensorimotor integration).

Japan Science and Technology Agency

Related Fingers Articles:

Texas A&M researchers help give robotic arms a steady hand for surgeries
Steady hands and uninterrupted, sharp vision are critical when performing surgery on delicate structures like the brain or hair-thin blood vessels.
Soft robot fingers gently grasp deep-sea jellyfish
Marine biologists have adopted ''soft robotic linguine fingers'' as tools to conduct their undersea research.
Discovering biological mechanisms enabling pianists to achieve skillful fingering
Japanese researchers discovered a sensorimotor function integration mechanism that enables the skillful fingering of pianists.
A smart artificial hand for amputees merges user and robotic control
EPFL scientists have successfully tested new neuroprosthetic technology that combines robotic control with users' voluntary control, opening avenues in the new interdisciplinary field of shared control for neuroprosthetic technologies.
Foot painters' toes mapped like fingers in the brain
Using your feet like hands can cause organized 'hand-like' maps of the toes in the brain, never before documented in people, finds a new UCL-led study of two professional foot painters, published in Cell Reports.
Extra finger 'birth defect' could provide blueprint for robotic extra limbs
New research on two people born with extra functional fingers has shown how the brain adapts to the workload imposed by more digits.
Six fingers per hand
A congenital additional finger brings motor advantages.
Hearing through your fingers: Device that converts speech
A novel study published in Restorative Neurology and Neuroscience provides the first evidence that a simple and inexpensive non-invasive speech-to-touch sensory substitution device has the potential to improve hearing in hearing-impaired cochlear implant patients, as well as individuals with normal hearing, to better discern speech in various situations like learning a second language or trying to deal with the 'cocktail party effect.' The device can provide immediate multisensory enhancement without any training.
Ultra-light gloves let users 'touch' virtual objects
Scientists from EPFL and ETH Zurich have developed an ultra-light glove -- weighing less than 8 grams per finger- that enables users to feel and manipulate virtual objects.
Hospital superbug uses tiny sticky fingers to infect medical tools and devices
The antibiotic-resistant Acinetobacter baumannii bacterium is one of the most globally harmful bacteria that causes nosocomial infections.
More Fingers News and Fingers Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.