Nav: Home

Discovering biological mechanisms enabling pianists to achieve skillful fingering

September 11, 2019

In Japan Science and Technology Agency's Strategic Basic Research Programs, Dr. Masato Hirano of Sony Computer Science Laboratories and his colleagues discovered a sensorimotor function integration mechanism that enables the skillful fingering of pianists.

The tactile sensation signaled by the skin and the proprioceptive sensation (deep sensation) signaled by muscles and joints are collectively called somatosensory sensation. It has long been understood that somatosensory information plays an important role in movement control. However, how somatic sensation contributes to production of the skillful movements of pianists has not been elucidated.

The research group developed a system to produce tactile and proprioceptive sensation in the fingers with an electric current stimulator and an exoskeletal robot hand 1) and developed an assessment system that evaluated the processing of each neural information in the cerebral cortex using electroencephalogram measurements and transcranial magnetic stimulation 2). Using this system, expert pianists were found to have altered mechanisms by which tactile and proprioceptive sensation suppress the activity of the primary motor cortex 3) in a specialized manner (somatosensory-motor integration). This neuroplastic adaptation was associated with enhancement of speed and precision of finger movements in pianists.

This finding is expected to be useful in the development of techniques to identify factors necessary for acquiring proficiency in skills such as piano playing, tailor-made training methods that take individual differences into account, diagnostic methods for the early detection of neurological disorders where the function of fingers deteriorates due to excessive training, and in the development of rehabilitation methods.
-end-
Note 1) Exoskeletal robot hand

An attachable device, so called an exoskeleton, that mechanically moves the user's fingers using a motor.

Note 2) Transcranial magnetic stimulation (TMS)

Stimulation of the cerebral cortex with magnets that penetrate the skull without harming the body. Neural activity generated by stimulating the motor cortex noninvasively is transmitted to muscles, and the excitability of the motor cortex is estimated from the electric potential evoked in the muscle.

Note 3) Primary motor cortex

The final output layer of the brain that sends motor commands to muscles via the corticospinal tract. Excitation and inhibitory inputs are received from the primary somatosensory cortex (sensorimotor integration).

Japan Science and Technology Agency

Related Fingers Articles:

Is it okay for children to count on their fingers?
Is it OK for children to count on their fingers?
Operating smart devices from the space on and above the back of your hand
Smartwatches such as the Apple Watch have been called a 'revolution on the wrist', but the operation of these devices is complicated, because the screen is small.
Mobile gold fingers
Drugs containing gold have been used for centuries to treat conditions like rheumatoid arthritis.
'Lab-on-a-glove' could bring nerve-agent detection to a wearer's fingertips (video)
There's a reason why farmers wear protective gear when applying organophosphate pesticides.
Soft coral exhibit strikingly different patterns of connectivity around British Isles
Researchers at the University of Exeter have discovered that some sea life could be just as disconnected as those divided by mountains or motorways.
More Fingers News and Fingers Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...