Nav: Home

Discovering biological mechanisms enabling pianists to achieve skillful fingering

September 11, 2019

In Japan Science and Technology Agency's Strategic Basic Research Programs, Dr. Masato Hirano of Sony Computer Science Laboratories and his colleagues discovered a sensorimotor function integration mechanism that enables the skillful fingering of pianists.

The tactile sensation signaled by the skin and the proprioceptive sensation (deep sensation) signaled by muscles and joints are collectively called somatosensory sensation. It has long been understood that somatosensory information plays an important role in movement control. However, how somatic sensation contributes to production of the skillful movements of pianists has not been elucidated.

The research group developed a system to produce tactile and proprioceptive sensation in the fingers with an electric current stimulator and an exoskeletal robot hand 1) and developed an assessment system that evaluated the processing of each neural information in the cerebral cortex using electroencephalogram measurements and transcranial magnetic stimulation 2). Using this system, expert pianists were found to have altered mechanisms by which tactile and proprioceptive sensation suppress the activity of the primary motor cortex 3) in a specialized manner (somatosensory-motor integration). This neuroplastic adaptation was associated with enhancement of speed and precision of finger movements in pianists.

This finding is expected to be useful in the development of techniques to identify factors necessary for acquiring proficiency in skills such as piano playing, tailor-made training methods that take individual differences into account, diagnostic methods for the early detection of neurological disorders where the function of fingers deteriorates due to excessive training, and in the development of rehabilitation methods.
-end-
Note 1) Exoskeletal robot hand

An attachable device, so called an exoskeleton, that mechanically moves the user's fingers using a motor.

Note 2) Transcranial magnetic stimulation (TMS)

Stimulation of the cerebral cortex with magnets that penetrate the skull without harming the body. Neural activity generated by stimulating the motor cortex noninvasively is transmitted to muscles, and the excitability of the motor cortex is estimated from the electric potential evoked in the muscle.

Note 3) Primary motor cortex

The final output layer of the brain that sends motor commands to muscles via the corticospinal tract. Excitation and inhibitory inputs are received from the primary somatosensory cortex (sensorimotor integration).

Japan Science and Technology Agency

Related Fingers Articles:

Discovering biological mechanisms enabling pianists to achieve skillful fingering
Japanese researchers discovered a sensorimotor function integration mechanism that enables the skillful fingering of pianists.
A smart artificial hand for amputees merges user and robotic control
EPFL scientists have successfully tested new neuroprosthetic technology that combines robotic control with users' voluntary control, opening avenues in the new interdisciplinary field of shared control for neuroprosthetic technologies.
Foot painters' toes mapped like fingers in the brain
Using your feet like hands can cause organized 'hand-like' maps of the toes in the brain, never before documented in people, finds a new UCL-led study of two professional foot painters, published in Cell Reports.
Extra finger 'birth defect' could provide blueprint for robotic extra limbs
New research on two people born with extra functional fingers has shown how the brain adapts to the workload imposed by more digits.
Six fingers per hand
A congenital additional finger brings motor advantages.
Hearing through your fingers: Device that converts speech
A novel study published in Restorative Neurology and Neuroscience provides the first evidence that a simple and inexpensive non-invasive speech-to-touch sensory substitution device has the potential to improve hearing in hearing-impaired cochlear implant patients, as well as individuals with normal hearing, to better discern speech in various situations like learning a second language or trying to deal with the 'cocktail party effect.' The device can provide immediate multisensory enhancement without any training.
Ultra-light gloves let users 'touch' virtual objects
Scientists from EPFL and ETH Zurich have developed an ultra-light glove -- weighing less than 8 grams per finger- that enables users to feel and manipulate virtual objects.
Hospital superbug uses tiny sticky fingers to infect medical tools and devices
The antibiotic-resistant Acinetobacter baumannii bacterium is one of the most globally harmful bacteria that causes nosocomial infections.
Identifying what makes a faster typist
The largest-ever dataset on typing speeds and styles, based on 136 million keystrokes from 168,000 volunteers, finds that the fastest typists not only make fewer errors, but they often type the next key before the previous one has been released.
The traits of fast typists discovered by analyzing 136 million keystrokes
An online study with 168,000 people shows large variation in typing speeds and styles.
More Fingers News and Fingers Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.