Nav: Home

'Planting water' is possible -- against aridity and droughts

September 11, 2019

The water regime of a landscape commutes more and more between the extremes drought or flooding. The type of vegetation and land use plays an important role in water retention and runoff. Together with scientists from the UK and the US, researchers from the Leibniz- Institute of Freshwater Ecology and Inland Fisheries (IGB) have developed a mathematical model that can reflect the complex interplays between vegetation, soil and water regimes. They show, for example, that in beech forests water is increasingly cycled between soil and vegetation to increase evaporation to the atmosphere, while grass cover promotes groundwater recharge.

With the developed model EcH2o-iso the researchers can quantify where, how and for how long water is stored and released in the landscape. The model helps to better predict the effects of land-use changes on the water balance under changing climatic conditions. In drought-prone areas in particular, this knowledge can help to develop land use strategies that increase the landscape's resistance to climate change and protect water resources. "So far, the type of vegetation has been considered primarily with a view to preventing soil erosion. In view of more frequent extreme weather events such as droughts and floods, however, it is increasingly a question of which plants can be cultivated to control the retention or loss of water in the landscape," says Prof. Doerthe Tetzlaff, head of the study, leader of the research group "Landscape Ecohydrology" at IGB and Professor in Ecohydrology at the Humboldt Universitaet zu Berlin.

Previous forecasting models often capture vegetation as a static element. Thus, the complex interactions between evapotranspiration - the evaporation of water by plants and of soil and water surfaces - and the physiological processes of plants could only be insufficiently understood. In this study, however, long-term data of direct vegetation measures were also used (e.g. biomass production and transpiration). This improves the reliability of the models and their transferability. In the field, the models were tested with so-called conservative tracers. These are markers that can be used to determine the age and origin of the water. This is a novel approach to assess the effects of climate change on the water balance.

In a region around Lake Stechlin in northern Germany, the researchers validated the model using field studies. They compared land areas with deciduous forest and grass cover. The results of the field study show that grassland use leads to more groundwater recharge and that in beech forests more water is returned to the atmosphere by evapotranspiration. However, the effects are site-specific and depend on the respective hydroclimate, biogeography and landscape ecology. With the help of the EcH2o-iso model, however, these differences can be taken into account in the future and local as well as large scale forecast models can be created.

Forschungsverbund Berlin

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1┬░Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
More Climate Change News and Climate Change Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...