Nav: Home

Geologists found links between deep sea methane emissions and ice ages

September 11, 2019

Since 2012, researchers at the Division of Bedrock Geology in the Department of Geology of Tallinn University of Technology Aivo Lepland and Tõnu Martma have been engaged in the research of an international research group investigating the factors controlling methane seepages and reconstructing the chronology of past methane emissions in one of the world's most climate-sensitive regions - the Barents Sea in the Arctic.

"Methane is one of the most aggressive climate-warming greenhouse gases, while being also an important energy resource. Changes of methane concentrations in the atmosphere have a major impact on the Earth's climate. Optimal use of methane with minimal climate effects therefore requires a very good understanding of the processes of methane generation and migration. To better understand the processes and forecast future trends, the scientists analyse not only current processes, but those that occurred during the geologic evolution of the Earth, i.e. the processes related to methane circulation that have taken place over millions of years," says a member of the research group, geologist Aivo Lepland.

The respected scientific journal Science Advances published recently the article "A 160,000-year-old history of tectonically controlled methane seepage in the Arctic" co-authored by TalTech geologists in cooperation with their colleagues at the Geological Survey of Norway, British Geological Survey and the University of Tromsø and the University of Bremen, who studied the chronology and geological factors controlling methane release in the Barents Sea off Svalbard.

To study the past deep-sea methane release episodes, the scientists analysed carbonate crusts that form when methane emanating vigorously from the seafloor comes into contact with sulphate in seawater. In the course of this process small amounts of uranium contained in sea water are incorporated into the crystallizing carbonates. Uranium is a radioactive element, which decays to form thorium. By measuring the concentrations of uranium and thorium in carbonate crusts, the scientists can determine the time of crystallisation of the minerals. "Opening of the "birth certificates" of the carbonate crusts through uranium and thorium analysis makes it possible to reconstruct the chronology of past seabed methane emissions and assess their causes," says Lepland.

The samples collected from the 1,200 m deep seabed revealed three major emission episodes from the Arctic seabed in the last 160,000 years: after the end of the last ice age around 23,000 years ago, 40-50 000 years ago, and 150,000 years ago. Each methane release episode lasted 10,000 to 20,000 years. Such chronology suggests that the methane emissions are linked to the glacial cycles. The pressure caused by the weight of a couple of kilometres thick ice sheet caused tensions in seabed rocks and opening of fracture systems allowing the upward flow of gases from deep subsurface strata.

The novelty of the findings lies in the fact that it is the first time that deep-sea methane emissions have been linked to ice ages. The growing and melting of ice sheet affect the tectonic regime in the earth's crust, triggering methane release episodes, which could have had an impact on the climate. So it is a kind of a closed circle. "How much methane was emitted exactly this way and what were the climate effects, however, requires further investigation," Lepland adds.
-end-
Source: Science Advances 08.2019 https://advances.sciencemag.org/content/5/8/eaaw1450.full

Additional information: Geologist at the Department of Geology of Tallinn University of Technology, the University of Tartu and Geological Survey of Norway, Aivo Lepland, Aivo.Lepland@NGU.NO

Kersti Vähi, TalTech Research Administration Office

Estonian Research Council

Related Methane Articles:

Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.
Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.
Methane not released by wind on Mars, experts find
New study rules out wind erosion as the source of methane gas on Mars and moves a step closer to answering the question of whether life exists on other planets.
Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.
Methane-consuming bacteria could be the future of fuel
Northwestern University researchers have found that the enzyme responsible for the methane-methanol conversion in methanotrophic bacteria catalyzes the reaction at a site that contains just one copper ion.
New measurement method for radioactive methane
The method developed by Juho Karhu in his PhD thesis work is a first step towards creating a precise measuring device.
New key players in the methane cycle
Methane is not only a powerful greenhouse gas, but also a source of energy.
Diffusing the methane bomb: We can still make a difference
The Arctic is warming twice as fast as the rest of the planet, causing the carbon containing permafrost that has been frozen for tens or hundreds of thousands of years to thaw and release methane into the atmosphere, thereby contributing to global warming.
China not 'walking the walk' on methane emissions
In China, regulations to reduce methane emissions from coal mining took full effect in 2010 and required methane to be captured or to be converted into carbon dioxide.
Interpreting new findings of methane on Mars
New data from the Mars Science Laboratory demonstrating the presence of methane presents novel challenges to explain how it was formed and what it suggests about the potential for life to exist or be supported on Mars.
More Methane News and Methane Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.