Nav: Home

Calcium channel blockers may be effective in treating memory loss in Alzheimer's disease

September 11, 2019

Alzheimer's disease (AD) is the most common cause of dementia but the changes in brain cell function underlying memory loss remains poorly understood. Researchers at the University of Bristol have identified that calcium channel blockers may be effective in treating memory loss.

The team's findings, published in Frontiers in Cellular Neuroscience, found treating a diseased brain cell with a blocker of the L-type channel reduced the number of calcium ions able to flow into the brain cell.

The researchers used fruit flies to study AD, using a fluorescent molecule called GCaMP6f, which reports the amount of calcium ions inside brain cells.

They found that diseased brain cells become overloaded with calcium ions, which at normal levels are important for memory formation. This overload was due to the overproduction of the gene encoding a channel, known as the L-type channel, which allows calcium ions to flow into the cell from outside. More of these channels means more calcium ions are able to flow into the cell, disrupting memory formation. Using a drug to block the L-type channel reversed the effect of disease and reduced the flow of calcium ions to a normal level.

The research team also investigated the memory of fruit flies by testing if they could remember which of two odours had previously been paired with an electric shock - similar to Pavlov's experiments with dogs.

While healthy flies remembered well, the diseased flies, like humans, displayed impaired memory. However, if the overproduction of L-type channels was corrected in the diseased flies, their brain cells were no longer overloaded with calcium ions and their memory was just as good as healthy flies. This shows that memory loss is likely due to calcium overload because too many L-type channels are made and, if this is corrected, memory impairment is rescued.

Dr James Hodge, Associate Professor in Neuroscience in the School of Physiology, Pharmacology & Neuroscience, said: "Memory loss in Alzheimer's disease (AD) is a highly distressing and difficult to treat symptom. Targeting the early changes in brain cell function - before they begin to degenerate - may be effective in treating memory loss.

"L-type channels have been thought to have a role in AD for some time and this study shows a direct link between memory loss and L-type channel overproduction in brain cells."

In humans suffering with AD, blocking these channels may be beneficial in treating memory impairment. The findings show that further work should be carried out to determine the mechanism underlying the recovery of memory and whether or not the team's research will prove effective in humans.
-end-
Paper

'Restoration of olfactory memory in Drosophila overexpressing human Alzheimer's disease associated tau by manipulation of L-type Ca2+ channels' by James P. Higham, Sergio Hidalgo, Edgar Buhl and James J.L. Hodge in Frontiers in Cellular Neuroscience [open access]

University of Bristol

Related Memory Articles:

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.
Seeing it both ways: Visual perspective in memory
Think of a memory from your childhood. Are you seeing the memory through your own eyes, or can you see yourself, while viewing that child as if you were an observer?
A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.
Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.
Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.
An immunological memory in the brain
Inflammatory reactions can change the brain's immune cells in the long term -- meaning that these cells have an 'immunological memory.' This memory may influence the progression of neurological disorders that occur later in life, and is therefore a previously unknown factor that could influence the severity of these diseases.
Anxiety can help your memory
Anxiety can help people to remember things, a study from the University of Waterloo has found.
Pores with a memory
Whether for separation processes, photovoltaics, catalysis, or electronics, porous polymer membranes are needed in many fields.
Memory gene goes viral
Two independent teams of scientists from the University of Utah and the University of Massachusetts Medical School have discovered that a gene crucial for learning, called Arc, can send its genetic material from one neuron to another by employing a strategy commonly used by viruses.
Neurobiology: The chemistry of memory
Learning requires the chemical adaptation of individual synapses. Researchers have now revealed the impact of an RNA-binding protein that is intimately involved in this process on learning and memory formation and learning processes.
More Memory News and Memory Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.