A curiosity-driven genetic discovery that should impact cancer treatments

September 11, 2019

A team of geneticists with a desire to understand the inner workings of genes implicated in cellular identity has discovered new biological targets that may help devise alternative therapies for cancers that are becoming resistant to existing drugs.

First discovered in fruit flies, Polycomb genes were initially studied due to their essential roles in development and their role in regulating cellular identity. They are central to the field of epigenetics, which strives to explain how many cells in our bodies - with identical sets of genes - look and behave so differently.

In 2011 scientists discovered that a particular Polycomb gene, called EZH2, is mutated in lymphomas, a cancer of immune cells. Benefiting from knowledge derived from many years of curiosity-driven scientific research, several companies soon developed drugs to inhibit the activity of EZH2. These targeted treatments are now showing real promise in clinical trials.

However, as with many cancer therapies, resistance has begun to arise, which means scientists will need to develop alternative strategies to fight the cancerous cells. The new discovery provides some new clues as to how this might be achieved and offers another real-life example of how curiosity-driven research can provide vital insights.

Associate Professor in Genetics at Trinity College Dublin, Adrian Bracken, led the team that has just published its findings in the leading international scientific journal, Molecular Cell. Irish Research Council PhD Fellow in Professor Bracken's lab, Dr Evan Healy, is lead author on the paper, which was published in parallel with another study conducted by researchers at the Memorial Sloan Kettering Cancer Centre.

Both research teams discovered that EZH2 requires additional "accessory components" to target its activity to key regions in the genome and execute its critical cellular functions. Importantly, the new results suggest these "accessory components" represent very promising alternative targets, which will be needed for oncologists to treat patients who develop resistance to existing EZH2 inhibitor drugs.

Commenting on the findings, Professor Bracken said: "This new discovery was driven purely by our curiosity to understand how Polycombs regulate cellular identity, but we also anticipate that it will lead to new opportunities to develop alternative treatments for patients with cancers driven by mutations in EZH2 and its related genes."

"We are extremely grateful for funding support from the Irish Research Council Advanced Laureate programme and Science Foundation Ireland, without which this research would not have been possible."

Commenting on the achievements of Professor Bracken's team, Director of the Irish Research Council, Peter Brown, said: "Earlier this year, the Irish Research Council announced a game-changing investment of €11.8 million in open frontier research to fund 12 researchers under our Advanced Laureate Awards programme. Adrian Bracken was one of those researchers, while members of his team are also availing of supports through other Irish Research Council programmes. We are delighted to support Adrian and his team to conduct ground-breaking research which is pushing out the boundaries of our understanding. The article in Molecular Cell, a leading journal in the field, reflects the calibre and significance of the research being done."
-end-
For more information about Professor Bracken and his lab, see: http://www.gen.tcd.ie/bracken.

Trinity College Dublin

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.