Nav: Home

Water detected on an exoplanet located in its star's habitable zone

September 11, 2019

Ever since the discovery of the first exoplanet in the 1990s, astronomers have made steady progress towards finding and probing planets located in the habitable zone of their stars, where conditions can lead to the formation of liquid water and the proliferation of life.

Results from the Kepler satellite mission, which discovered nearly 2/3 of all known exoplanets to date, indicate that 5 to 20% of Earths and super-Earths are located in the habitable zone of their stars. However, despite this abundance, probing the conditions and atmospheric properties on any of these habitable zone planets is extremely difficult and has remained elusive... until now.

A new study by Professor Björn Benneke of the Institute for Research on Exoplanets at the Université de Montréal, his doctoral student Caroline Piaulet and several of their collaborators reports the detection of water vapour and perhaps even liquid water clouds in the atmosphere of the planet K2-18b. This exoplanet is about nine times more massive than our Earth and is found in the habitable zone of the star it orbits. This M-type star is smaller and cooler than our Sun, but due to K2-18b's close proximity to its star, the planet receives almost the same total amount of energy from its star as our Earth receives from the Sun.

The similarities between the exoplanet K2-18b and the Earth suggest to astronomers that the exoplanet may potentially have a water cycle possibly allowing water to condense into clouds and liquid water rain to fall. This detection was made possible by combining eight transit observations - the moment when an exoplanet passes in front of its star - taken by the Hubble Space Telescope.

The Université de Montréal is no stranger to the K2-18 system located 111 light years away. The existence of K2-18b was first confirmed by Prof. Benneke and his team in a 2016 paper using data from the Spitzer Space Telescope. The mass and radius of the planet were then determined by former Université de Montréal and University of Toronto PhD student Ryan Cloutier. These promising initial results encouraged the iREx team to collect follow-up observations of the intriguing world."

Scientists currently believe that the thick gaseous envelope of K2-18b likely prevents life as we know it from existing on the planet's surface. However, the study shows that even these planets of relatively low mass which are therefore more difficult to study can be explored using astronomical instruments developed in recent years. By studying these planets which are in the habitable zone of their star and have the right conditions for liquid water, astronomers are one step closer to directly detecting signs of life beyond our Solar System.

"This represents the biggest step yet taken towards our ultimate goal of finding life on other planets, of proving that we are not alone. Thanks to our observations and our climate model of this planet, we have shown that its water vapour can condense into liquid water. This is a first", says Björn Benneke.

About this study

The preprint version of the non-peer-reviewed manuscript titled "Water vapor on the habitable-zone exoplanet K2-18b" by Björn Benneke et al., was published on September 10, 2019, on arXiv.org, and has been submitted to the Astronomical Journal. It was mainly funded by NASA and is based in part on observations made with the Hubble Space Telescope, operated by the Space Telescope Science Institute under a contract with NASA. Further funding came from Canada's Natural Sciences and Engineering Research Council (NSERC), the Fond de recherche québécois - nature et technologie (FRQNT; Québec), and others.
-end-


University of Montreal

Related Planets Articles:

How planets may form after dust sticks together
Scientists may have figured out how dust particles can stick together to form planets, according to a Rutgers co-authored study that may also help to improve industrial processes.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.
How many Earth-like planets are around sun-like stars?
A new study provides the most accurate estimate of the frequency that planets that are similar to Earth in size and in distance from their host star occur around stars similar to our Sun.
Dead planets can 'broadcast' for up to a billion years
Astronomers are planning to hunt for cores of exoplanets around white dwarf stars by 'tuning in' to the radio waves that they emit.
The sun follows the rhythm of the planets
One of the big questions in solar physics is why the sun's activity follows a regular cycle of 11 years.
Five planets revealed after 20 years of observation
To confirm the presence of a planet, it is necessary to wait until it has made one or more revolutions around its star.
Icy giant planets in the laboratory
Giant planets like Neptune may contain much less free hydrogen than previously assumed.
New NASA mission could find more than 1,000 planets
A NASA telescope that will give humans the largest, deepest, clearest picture of the universe since the Hubble Space Telescope could find as many as 1,400 new planets outside Earth's solar system, new research suggests.
Giant planets around young star raise questions about how planets form
Researchers have identified a young star with four Jupiter and Saturn-sized planets in orbit around it, the first time that so many massive planets have been detected in such a young system.
More Planets News and Planets Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.