Solving the longstanding mystery of how friction leads to static electricity

September 11, 2019

EVANSTON, Ill. -- Most people have experienced the hair-raising effect of rubbing a balloon on their head or the subtle spark caused by dragging socked feet across the carpet. Although these experiences are common, a detailed understanding of how they occur has eluded scientists for more than 2,500 years.

Now a Northwestern University team developed a new model that shows that rubbing two objects together produces static electricity, or triboelectricity, by bending the tiny protrusions on the surface of materials.

This new understanding could have important implications for existing electrostatic applications, such as energy harvesting and printing, as well as for avoiding potential dangers, such as fires started by sparks from static electricity.

The research will be published on Thursday, Sept. 12 in the journal Physical Review Letters. Laurence Marks, professor of materials science and engineering in Northwestern's McCormick School of Engineering, led the study. Christopher Mizzi and Alex Lin, doctoral students in Marks's laboratory, were co-first authors of the paper.

Greek philosopher Thales of Miletus first reported friction-induced static electricity in 600 B.C. After rubbing amber with fur, he noticed the fur attracted dust.

"Since then, it has become clear that rubbing induces static charging in all insulators -- not just fur," Marks said. "However, this is more or less where the scientific consensus ended."

At the nanoscale, all materials have rough surfaces with countless tiny protrusions. When two materials come into contact and rub against one another, these protrusions bend and deform.

Marks's team found that these deformations give rise to voltages that ultimately cause static charging. This phenomenon is called the "flexoelectric effect," which occurs when the separation of charge in an insulator arises from deformations such as bending.

Using a simple model, the Northwestern team showed that voltages arising from the bending protrusions during rubbing are, indeed, large enough to cause static electricity. This work explains a number of experimental observations, such as why charges are produced even when two pieces of the same material are rubbed together and predicts experimentally measured charges with remarkable accuracy.

"Our finding suggests that triboelectricity, flexoelectricity and friction are inextricably linked," Marks said. "This provides much insight into tailoring triboelectric performance for current applications and expanding functionality to new technologies."

"This is a great example of how fundamental research can explain everyday phenomena which hadn't been understood previously, and of how research in one area -- in this case friction and wear -- can lead to unexpected advances in another area," said Andrew Wells, a program director at the National Science Foundation (NSF), which funded the research. "NSF funds research like this in materials science and engineering for new knowledge that can one day open new opportunities."
The research, "Does flexoelectricity drive triboelectricity," was supported by the NSF (award number CMMI-1400618) and the U.S. Department of Energy (award number DE-FG02-01ER45945).

Northwestern University

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to