Nav: Home

A Goldilocks zone for planet size

September 11, 2019

In The Little Prince, the classic novella by Antoine de Saint-Exupéry, the titular prince lives on a house-sized asteroid so small that he can watch the sunset any time of day by moving his chair a few steps.

Of course, in real life, celestial objects that small can't support life because they don't have enough gravity to maintain an atmosphere. But how small is too small for habitability?

In a recent paper, Harvard University researchers described a new, lower size limit for planets to maintain surface liquid water for long periods of time, extending the so-called Habitable or "Goldilocks'' Zone for small, low-gravity planets. This research expands the search area for life in the universe and sheds light on the important process of atmospheric evolution on small planets.

The research was published in the Astrophysical Journal.

"When people think about the inner and outer edges of the habitable zone, they tend to only think about it spatially, meaning how close the planet is to the star," said Constantin Arnscheidt, A.B. '18, first author of the paper. "But actually, there are many other variables to habitability, including mass. Setting a lower bound for habitability in terms of planet size gives us an important constraint in our ongoing hunt for habitable exoplanets and exomoons."

Generally, planets are considered habitable if they can maintain surface liquid water long enough to allow for the evolution of life, conservatively about one billion years. Astronomers hunt for these habitable planets within specific distances of certain types of stars -- stars that are smaller, cooler and lower mass than our Sun have a habitable zone much closer than larger, hotter stars.

The inner-edge of the habitable zone is defined by how close a planet can be to a star before a runaway greenhouse effect leads to the evaporation of all the surface water. But, as Arnscheidt and his colleagues demonstrated, this definition doesn't hold for small, low gravity planets.

The runaway greenhouse effect occurs when the atmosphere absorbs more heat that it can radiate back out into space, preventing the planet from cooling and eventually leading to unstoppable warming until its oceans turn to steam in the atmosphere.

However, something important happens when planets decrease in size: as they warm, their atmospheres expand outward, becoming larger and larger relative to the size of the planet. These large atmospheres increase both the absorption and radiation of heat, allowing the planet to better maintain a stable temperature. The researchers found that atmospheric expansion prevents low-gravity planets from experiencing a runaway greenhouse effect, allowing them to maintain surface liquid water while orbiting in closer proximity to their stars.

When planets get too small, however, they lose their atmospheres altogether and the liquid surface water either freezes or vaporizes. The researchers demonstrated that there is a critical size below which a planet can never be habitable, meaning the habitable zone is bounded not only in space, but also in planet size.

The researchers found that the critical size is about 2.7 percent the mass of Earth. If an object is smaller than 2.7 percent the mass of Earth, its atmosphere will escape before it ever has the chance to develop surface liquid water, similar to what happens to comets in the Solar System today. To put that into context, the Moon is 1.2 percent of Earth mass and Mercury is 5.53 percent.

The researchers were also able to estimate the habitable zones of these small planets around certain stars. Two scenarios were modeled for two different types of stars: a G-type star like our own Sun and an M-type star modeled after a red dwarf in the constellation Leo.

The researchers solved another long-standing mystery in our own solar system. Astronomers have long wondered whether Jupiter's icy moons Europa, Ganymede, and Callisto would be habitable if radiation from the sun increased. Based on this research, these moons are too small to maintain surface liquid water, even if they were closer to the Sun.

"Low-mass waterworlds are a fascinating possibility in the search for life, and this paper shows just how different their behaviour is likely to be compared to that of Earth-like planets," said Robin Wordsworth, Associate Professor of Environmental Science and Engineering at SEAS and senior author of the study. "Once observations for this class of objects become possible, it's going to be exciting to try to test these predictions directly."
-end-
This paper was co-authored by Feng Ding, a postdoctoral fellow at the Harvard John A. Paulson School of Engineering and Applied Sciences.

Harvard John A. Paulson School of Engineering and Applied Sciences

Related Solar System Articles:

From rocks in Colorado, evidence of a 'chaotic solar system'
Plumbing a 90 million-year-old layer cake of sedimentary rock in Colorado, a team of scientists from the University of Wisconsin-Madison and Northwestern University has found evidence confirming a critical theory of how the planets in our solar system behave in their orbits around the sun.
Why are there different 'flavors' of iron around the Solar System?
New work from Carnegie's Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System's youth when planets were forming and their cores were created.
Does our solar system have an undiscovered planet? You can help astronomers find out
ASU's Adam Schneider and colleagues are hunting for runaway worlds in the space between stars, and citizen scientists can join the search with a new NASA-funded website.
Rare meteorites challenge our understanding of the solar system
Researchers have discovered minerals from 43 meteorites that landed on Earth 470 million years ago.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.
More Solar System News and Solar System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...