Nav: Home

Climate change: A dirt-y business

September 11, 2019

Groundwater is essential for growing crops, but new research shows climate change is making it harder for soil to absorb rainfall.

While the idea that soil particles rearrange themselves in response to environmental conditions is not new, scientists once thought these shifts in the ground happened slowly. Not anymore.

A study published today in Science Advances shows increased rainfall reduces the rate at which water can move into the soil, and that this change happens fast -- it only takes a few years or decades, not centuries as scientists previously assumed.

UC Riverside soil scientist Daniel Hirmas, who participated in the study, said the repercussions of rainfall-induced changes to soil's ability to absorb water extend beyond agriculture.

"These findings mean that more water heads into streams or lakes instead of into the ground, potentially increasing susceptibility to flash floods," he said.

"The ability for soil to store carbon is also dependent on groundwater," he said. "Thus, carbon stores may be impacted via this change in soil properties. There is the potential for carbon to move into other places either in the environment or atmosphere if it isn't being retained in the ground as much."

Hirmas and a team of scientists examined the dirt from different plots of prairie land in Kansas, some subjected to 25 years of simulated extra rainfall from sprinklers, and some that were not.

The team, including scientists from Rutgers, Temple, University of Kansas, Kansas State and Colorado State universities, then examined samples of soil from both the sprinkler irrigated and nonirrigated sites.

They found that the architecture of the soils, meaning the organization of particles and large pores in the samples, were different.

In the irrigated soil, plant roots clogged the open pores more often, causing samples to retain slightly more water than the soil not affected by simulated rainfall. The roots respond to extra water either from rain or atmospheric humidity, taking up residence in and reducing the space available in soil pores.

The team also found irrigated soils were less able to expand or contract because of more constant soil moisture conditions. Soil expands when it gets wet and shrinks when it dries. If conditions are more consistently wet, the expansion and contraction isn't happening as much.

Given that rainfall and other environmental conditions are likely to continue shifting rapidly across the globe, it follows that soil conditions worldwide could also shift fairly rapidly.

The next step is to expand these investigations to a wider array of soil types and environmental conditions, so scientists can eventually apply what they've learned to other regions of the world.

In addition, these findings are likely to have implications for climate modeling work.

"Future climate models need to account for these dynamic soil changes to more accurately predict effects of climate change on groundwater, carbon storage, and food security."
-end-


University of California - Riverside

Related Science Articles:

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
AAAS and March for Science partner to uphold science
AAAS, the world's largest general scientific organization, announced Thursday that it will partner with the March for Science, a nonpartisan set of activities that aim to promote science education and the use of scientific evidence to inform policy.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...