Nav: Home

Initial steps to compile a healthy human gut microbiome reference database underway

September 11, 2019

An initial baseline healthy gut microbiome database and abundance profile is described in a study published September 11, 2019 in the open-access journal PLOS ONE by Charles Hadley King from George Washington University Medical Center, USA, and colleagues.

Though research interest in the human gut microbiome's importance to overall health continues to grow, there's currently no comprehensive gut microbiome reference list available to researchers and patients. In this study, King and colleagues begin to catalog the organismal makeup of healthy human gut microbiomes, and developed a prototype reporting template for clinicians to relay results to patients.

To compile their database, the authors genetically sequenced 48 fecal samples from sixteen healthy participants recruited from George Washington University campus in Washington, D.C., in addition to using 50 fecal metagenomic samples downloaded from the Human Microbiome Project from individuals screened as "healthy".

After parsing all samples' genomic and metagenomic sequences using a novel software-based workflow, King and colleagues compiled an initial database of confirmed microbes and their relative abundance across all samples, the GutFeelingKB, using NCBI's comprehensive and publicly available genetic information to provide metadata on the organisms described.

The GutFeelingKB describes 157 organisms (155 bacterial and two archaeal organisms) across 60 distinct genera. The largest phylum of bacteria represented was Firmicutes (40 percent of all organisms on the list), which in turn was made up of 20 percent Clostridia, 19 percent Bacterioidia, 17 percent Bifidobacteriales, 14 percent Enterobacterales, and 14 percent Lactobacillales bacteria--classes of bacteria also found in yogurt and other probiotic foods. The authors also note that 84 organisms were common to all of the samples, potentially indicating that these may be core species for the human gut.

This study only recruited sixteen participants, a small sample. But while further studies might continue to identify additional organisms present in healthy guts from around the world, GutFeelingKB is an important first step. The database could act as a starting point for comparative analysis of samples and the development of future patient microbiome treatments.

The authors add: "Our goal is to map the healthy gut microbiome so that we and other researchers can use our data to develop disease specific prediction models."
Citation: King CH, Desai H, Sylvetsky AC, LoTempio J, Ayanyan S, Carrie J, et al. (2019) Baseline human gut microbiota profile in healthy people and standard reporting template. PLoS ONE 14(9): e0206484.

Funding: This project was supported in part by funds from National Science Foundation (NSF) (award number: 1546491 to RM), the NIH National Center for Advancing Translational Sciences (award number UL1TR000075 to KAC, HM, RM), and the McCormick Genomic and Proteomic Center (MGPC) at the George Washington University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

In your coverage please use this URL to provide access to the freely available article in PLOS ONE:


Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
More Bacteria News and Bacteria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...