Nav: Home

Predictable eSports: Amateurs and professionals sit differently on a chair

September 11, 2019

A group of scientists from Skoltech's Computational and Data-Intensive Science and Engineering Center (CDISE) won the Best Paper Award at the prestigious 5th IEEE Internet of People conference (IoP 2019) for their research in artificial intelligence which helped them find a connection between an eSports player's movements and skill level. Their research findings show that machine learning methods help accurately predict a player's skill level in 77% of cases.

In just a few years, eSports that has its roots in video games for schoolkids has evolved into a full-fledged industry with professional teams, coaches, and huge investments. Like in any other sport, an eSports player can be a professional or an amateur, and telling one from another is essential for optimizing the training process.

Master's students from the Skolkovo Institute of Science and Technology (Skoltech), Moscow, Moscow Institute of Physics and Technology (MIPT) and the State University of Aerospace Instrumentation (SUAI), St. Petersburg, led by Skoltech professors, Andrey Somov and Evgeny Burnaev, looked for a connection between the proficiency and body movements of an eSports player seated on a chair.

"We assumed that there could be a link between a player's body movements and skill level. Also, it was interesting to look at the players' response to various game events, such as kills, deaths or shootings. We suspected that professional players and beginners would react differently to the same event," explains the first author of the study and Skoltech master student, Anton Smerdov.

The experiment involved a total of 19 players, including 9 professionals and 10 amateurs, who were asked to play Counter-Strike: Global Offensive (CS: GO) for 30 to 60 minutes. Their skills were evaluated in game hours, similarly to pilots, whose skills are assessed in flight hours. The data were collected using an accelerometer and a gyroscope embedded in the chair.

"We then cut the data into 3-minute sessions, assuming that 3 minutes were enough to understand the player's behavior and obtain a sample big enough for algorithm learning," Smerdov added.

The patterns extracted from each session were used to evaluate the players' behavior and check how intensively and how often they moved or turned around along each of the three axes and leaned back in the chair. A total of 31 patterns were obtained for each player, and 8 most important features were defined using statistical techniques. Machine learning methods were then applied to the key features. The popular Random Forest method displayed the best performance, correctly determining the player's skill level from a 3-minute session in 77% of cases. Also, the results showed that professional players move around more often and more intensively than beginners, while sitting perfectly still during shootings and other game events.

Launched within the Skoltech Introduction to Internet of Things course and Skoltech Cyber Academy initiative, this research project is being further developed at the Head Kraken eSports start-up, benefiting from the grants provided by Skoltech's STRIP program and the Russian Foundation for Basic Research (RFBR).

The team led by professors Andrey Somov and Evgeny Burnaev has been studying eSports players' psycho-emotional state and physical reactions to the game using sensors and machine learning methods since 2018. The data collected and analyzed include pulse, skin resistance, gaze direction, hand movements, environmental data (temperature, humidity, CO2 level), game telemetry, and other parameters.
-end-


Skolkovo Institute of Science and Technology (Skoltech)

Related Artificial Intelligence Articles:

Researchers rebuild the bridge between neuroscience and artificial intelligence
In an article in the journal Scientific Reports, researchers reveal that they have successfully rebuilt the bridge between experimental neuroscience and advanced artificial intelligence learning algorithms.
Artificial intelligence can help some businesses but may not work for others
The temptation for businesses to use artificial intelligence and other technology to improve performance, drive down labor costs, and better the bottom line is understandable.
Artificial intelligence could help predict future diabetes cases
A type of artificial intelligence called machine learning can help predict which patients will develop diabetes, according to an ENDO 2020 abstract that will be published in a special supplemental section of the Journal of the Endocrine Society.
Artificial intelligence for very young brains
Montreal's CHU Sainte-Justine children's hospital and the ÉTS engineering school pool their expertise to develop an innovative new technology for the segmentation of neonatal brain images.
Putting artificial intelligence to work in the lab
An Australian-German collaboration has demonstrated fully-autonomous SPM operation, applying artificial intelligence and deep learning to remove the need for constant human supervision.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Artificial intelligence and family medicine: Better together
Researcher at the University of Houston are encouraging family medicine physicians to actively engage in the development and evolution of artificial intelligence to open new horizons that make AI more effective, equitable and pervasive.
Artificial Intelligence to improve the precision of mammograms
The Artificial Intelligence techniques, used in combination with evaluations by expert radiologists, improve the precision in the detection of cancer through mammograms.
Using artificial intelligence to assess ulcerative colitis
Researchers from Tokyo Medical and Dental University (TMDU) have developed an artificial intelligence system with a deep neural network that can effectively evaluate endoscopic data from patients with ulcerative colitis, which is a type of inflammatory bowel disease, without the need for biopsy collection.
Robot uses artificial intelligence and imaging to draw blood
Rutgers engineers have created a tabletop device that combines a robot, artificial intelligence and near-infrared and ultrasound imaging to draw blood or insert catheters to deliver fluids and drugs.
More Artificial Intelligence News and Artificial Intelligence Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.