Nav: Home

Genetic discovery linked to rare eye disease, MacTel

September 11, 2019

SALT LAKE CITY, September 11, 2019--John A. Moran Eye Center physician-researcher Paul S. Bernstein, MD, PhD, and his patients at the University of Utah played a key role in the recent discovery of the first genetic cause for a rare eye disease.

Macular telangiectasia type 2 (MacTel) affects about one in 5,000 people, causing a gradual loss of central vision, typically after age 40. As part of an international research effort directed by the Lowy Medical Research Institute (LMRI), Bernstein has spent 15 years working with MacTel patients, sifting through family genetic histories.

Among 250 patients enrolled in the Utah Center for MacTel Genetics, part of an LMRI network of more than 30 centers around the world, a Utah father and son gave Bernstein and LMRI researchers a breakthrough clue. Both had MacTel, along with a rare neurological condition called hereditary sensory neuropathy type 1 (HSAN1). HSAN1 damages the peripheral nerves, typically producing tingling, weakness, and a reduced ability to feel pain and sense hot and cold in the legs and feet. Some patients do not lose sensation but instead feel shooting pains.

Research published in The New England Journal of Medicine (NEJM) on September 11, 2019, "Serine and Lipid Metabolism in Macular Disease and Peripheral Neuropathy," confirms two of the genetic variants that cause HSAN1 also cause MacTel.

"We believe this will be the first of many genes linked to MacTel," said Bernstein, one of three senior authors on the NEJM paper and a retinal specialist who directs clinical research at Moran. "This discovery gives patients hope for new treatments, and our research has important implications for other retinal eye diseases."

HSAN1 is associated with rare coding mutations in SPT genes that lead to accumulation of toxic biomolecules in the body called deoxysphingolipids (deoxySLs). Presumably, these same toxic molecules cause damage to the macula, or center of the retina, in patients with HSAN1 and MacTel.

Working with LMRI and the Deater Foundation, a Pennsylvania-based non-profit dedicated to HSAN1 research, Bernstein and fellow clinicians on LMRI's MacTel Project conducted comprehensive eye exams on a group of 10 HSAN1 patients unrelated to the Utah family. They found the majority (7/10) of the patients had MacTel.

All HSAN1 patients who did not have clinical signs of MacTel were less than 46 years old and may have been too young to exhibit signs of this late-onset eye disease. Bernstein was able to examine several of these young HSAN1 patients who did not yet show definite signs of MacTel using fluorescence lifetime imaging ophthalmoscopy (FLIO)--an extremely sensitive, non-invasive imaging technology available in the U.S. only at the Moran Eye Center. FLIO images show a characteristic crescent or ring in the macula in all patients affected by MacTel. All of the young asymptomatic HSAN1 patients exhibited the "MacTel signature" in their FLIO images, suggesting that they are at high risk of developing MacTel in the future.

Further research, combining clinical and laboratory studies, showed that many other MacTel patients also had elevated deoxySL levels, presumably due to other genetic defects or low levels of serine, an amino acid that we make and consume in our diets. Elevated levels of deoxySL in the retina were shown to compromise visual function. Low serine and the deoxySLs were not previously known to affect the eye's macular health.

Laboratory experiments determined fenofibrate, a lipid-lowering medication used for high cholesterol, shows potential for protecting the retina from deoxySLs. Areas of future research include determining how widespread the role of deoxySLs is in causing eye disease; finding the pathways that lead to elevated deoxySLs in MacTel; and developing treatment plans based on a patient's unique genetic and metabolomic profile.

These findings offer potential new insights into other more common eye and systemic diseases, like diabetic retinopathy, liver disease, and metabolic syndrome that are also associated with elevated deoxySLs.

Moran study participant Tami Murphy, a Deater Foundation executive and board member with HSAN1 and possible early signs of MacTel, said she's grateful for the many collaborators who have worked so hard over the years.

"It's exciting to be a part of an international research community that is working so hard to shed light on rare diseases, advancing our knowledge of MacTel and HSAN1," she said.
Lydia Sauer, MD, a research associate in the Bernstein Lab who specializes in FLIO, and Barbara J. Hart, clinical research coordinator at Moran, were among the more than 30 NEJM paper authors representing 14 institutions in the U.S., U.K., and Australia.

About the John A. Moran Eye Center at the University of Utah

The John A. Moran Eye Center at the University of Utah serves as the largest ophthalmology clinical care and research facility in the Mountain West with more than 60 faculty members and 10 satellite clinics. Physicians provide comprehensive care in nearly all ophthalmic subspecialties, making the Moran Eye Center a major referral center for complex cases with over 145,000 patient visits and about 7,000 surgeries annually. Moran supports 14 laboratories to develop the treatments of tomorrow. Faculty also train 12 residents, four interns, and up to 13 fellows a year in one of the nation's most selective and highly-regarded academic programs. U.S. News & World Report consistently ranks Moran among its Best Hospitals for Ophthalmology, while Ophthalmology Times surveys evaluating residency programs, clinical care, and research have ranked Moran in the nation's top 10 for having the best overall program. CEO Randall J Olson, MD, leads more than 500 employees working to achieve Moran's vision that no person with a blinding condition, eye disease, or visual impairment should be without hope, understanding, and treatment.

University of Utah Health

Related Retina Articles:

Retina may be sensitive gauge of blast-wave pressure injury
Although traumatic brain injury (TBI) is a well-recognized consequence of extreme blast waves, it is less appreciated that over 80 percent of combat veterans with TBI also develop visual problems.
Researchers shed light on how our eyes process visual cues
The mystery of how human eyes compute the direction of moving light has been made clearer by scientists at The University of Queensland.
Scientists show protective effects of suppressing thyroid hormone receptors in retina
New research published online in The FASEB Journal ( suggests that the suppression of thyroid hormone receptor activity locally in the retina protects cone photoreceptor cells in mouse models of human retinal degenerative diseases.
Oxford student creates first synthetic retina for the visually impaired
A synthetic, soft tissue retina developed by an Oxford University student could offer fresh hope to visually impaired people.
LSUHealthNO research shows fish oil component helps damaged brain and retina cells survive
A team of researchers led by Nicolas Bazan, M.D., Ph.D., Boyd Professor and Director of the Neuroscience Center of Excellence at LSU Health New Orleans School of Medicine, has shown for the first time that NDP1, a signaling molecule made from DHA, can trigger the production of a protective protein against toxic free radicals and injury in the brain and retina.
More Retina News and Retina Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...