Nav: Home

How does chronic stress induce bone loss?

September 11, 2020

Clinical studies have found that bone mineral density in patients with anxiety or depression is lower than in ordinary people.

The brain, commander of the body, receives and processes external signals, and then sends instructions to peripheral bones. But how does anxiety induce a decline in bone mineral density?

Researchers from the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences and their collaborators now have an answer. They found that a central neural circuit from the forebrain to the hypothalamus mediates chronic stress-induced bone loss via the peripheral sympathetic nervous system.

Their study was published in the Journal of Clinical Investigation on September 10.

The researchers found that isolation can significantly increase anxiety levels, thus inducing bone loss in human subjects.

Biochemical analysis showed that prolonged isolation increases the concentration of norepinephrine and decreases osteogenic markers in serum. These changes were consistent with the observation of elevated anxiety and reduced bone formation in subjects.

In order to identify the neural mechanism underlying chronic stress-induced bone loss, the research team used a mouse model where mice were subjected to unpredictable chronic mild stress.

They found that after four to eight weeks of chronic stress, the mice displayed significant anxiety behaviors. The bone mineral density of the mice in the stress group was significantly lower than in the control group.

These results confirmed the correlation between stress-induced anxiety and bone loss in experimental animals, and provided a good animal model for follow-up neural mechanism analysis.

Through extensive experiments, researchers identified a population of inhibitory neurons expressing somatostatin in the brain nucleus that are known as the bed nucleus of the stria terminalis (BNST) in the forebrain. These neurons were activated when animals showed anxiety behaviors and transmitted "anxiety" information to the neurons in the ventromedial hypothalamus (VMH).

"Activating the BNST-VMH neural circuit can simultaneously induce anxiety-like behaviors and generate bone loss in the mice, whereas inhibition of this circuit can prevent stress-induced anxiety and bone loss at the same time," said Prof. YANG Fan from SIAT, the co-first and co-corresponding author of the study.

Furthermore, the researchers discovered that glutamatergic neurons in nucleus tractus solitaries (NTS) and the sympathetic system were employed to regulate stress-induced bone loss.

"This study provides a new perspective for the systematic study of the regulatory mechanism of brain homeostasis on metabolism and endocrine function of the body in special environments," said Prof. WANG Liping, Director of the Brain Cognition and Brain Disease Institute of SIAT.
-end-


Chinese Academy of Sciences Headquarters

Related Stress Articles:

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.
Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.
How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS
How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.
Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.
How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.
Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.
Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.
Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.
Maternal stress at conception linked to children's stress response at age 11
A new study published in the Journal of Developmental Origins of Health and Disease finds that mothers' stress levels at the moment they conceive their children are linked to the way children respond to life challenges at age 11.
More Stress News and Stress Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.