Nav: Home

Are male genes from Mars, female genes from Venus?

September 11, 2020

Males and females share the vast majority of their genomes. Only a sprinkling of genes, located on the so-called X and Y sex chromosomes, differ between the sexes. Nevertheless, the activities of our genes--their expression in cells and tissues--generate profound distinctions between males and females.

Not only do the sexes differ in outward appearance, their differentially expressed genes strongly affect the risk, incidence, prevalence, severity and age-of-onset of many diseases, including cancer, autoimmune disorders, cardiovascular disease and neurological afflictions.

Researchers have observed sex-associated differences in gene expression across a range of tissues including liver, heart, and brain. Nevertheless, such tissue-specific sex differences remain poorly understood. Most traits that display variance between males and females appear to result from differences in the expression of autosomal genes common to both sexes, rather than through expression of sex chromosome genes or sex hormones.

A better understanding of these sex-associated disparities in the behavior of our genes could lead to improved diagnoses and treatments for a range of human illnesses.

In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.

"One of the most striking things about this comprehensive study of sex differences," Wilson said, "is that while aggregate differences span the genome and contribute to biases in human health, each individual gene varies tremendously between people."

Wilson is a researcher in the Biodesign Center for Mechanisms in Evolution, the Center for Evolution and Medicine, and ASU's School of Life Sciences.

A decade ago, an ambitious undertaking, known as the Genotype-Tissue Expression (GTEx) consortium began to investigate the effects DNA variation on gene expression across the range of human tissues. Recent findings, appearing in the Science issue under review, indicate that sex-linked disparities in gene expression are far more pervasive than once assumed, with more than a third of all genes displaying sex-biased expression in at least one tissue. (The new research highlighted in Wilson's PERSPECTIVES piece describes gene regulatory differences between the sexes in every tissue under study.)

Sex-linked differences in gene expression are shared across mammals, though their relative roles in disease susceptibility remain speculative. Natural selection likely guided the development of many of these attributes. For example, the rise of placental mammals some 90 million years ago may have led to differences in immune function between males and females.

Such sex-based distinctions arising in the distant past have left their imprint on current mammals, including humans, expressed in higher rates of autoimmune disorders in females and increased cancer rates in males.

Despite their critical importance for understanding disease prevalence and severity, sex differences in gene expression have only recently received serious attention in the research community. Wilson and others suggest that much historical genetic research, using primarily white male subjects in mid-life, have yielded an incomplete picture.

Such studies often fail to account for sex differences in the design and analysis of experiments, rendering a distorted view of sex-based disease variance, often leading to one-size-fits-all approaches to diagnosis and treatment. The authors therefore advise researchers to be more careful about generalizations based on existing databases of genetic information, including GTEx.

A more holistic approach is emerging, as researchers investigate the full panoply of effects related to male and female gene expression across a broader range of human variation.
-end-


Arizona State University

Related Genome Articles:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.
Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.
A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.
Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
More Genome News and Genome Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.