Major issue impeding successful magnetic confinement fusion resolved by joint Sandia/General Atomics/UC-San Diego research

September 12, 2000

ALBUQUERQUE, N.M - A research team from the Department of Energy's (DOE) Sandia National Laboratories, General Atomics and the University of California at San Diego has resolved one of many issues impeding successful magnetic confinement fusion. The team discovered a way to keep the fusion plasma from eroding divertor walls inside tokamak fusion machines.

Divertor walls are the region in a tokamak where material surfaces are in direct contact with the energy-producing fusion plasma. Erosion is undesirable because it increases the need to replace components in the divertor, contaminates the plasma, and causes material depositions in undesirable places - all problematic for successful fusion.

The researchers used the DIII-D tokamak magnetic fusion machine at General Atomics in San Diego and the Divertor Materials Evaluation System (DiMES) to conduct experiments that showed erosion is eliminated during operation with detached plasmas. General Atomics operates the DIII-D fusion machine for DOE.

Fusion combines or fuses light atoms, such as atoms of hydrogen, to form heavier atoms. In the process some of the mass of hydrogen is converted into energy - the same way the sun creates energy. The goal is to convert this fusion energy into electric power.

While there are several ways to produce fusion, among the most promising is the tokamak, a large doughnut-shaped magnetic confinement device.

"Tokamak" is an acronym derived from Russian words meaning "toroidal chamber and magnetic coil."

Current - up to several million amps - flows through the doughnut-shaped plasma made of deuterium and tritium. A strong magnetic field confines plasma that high-energy particle beams or radio-frequency waves heat to more than a hundred million degrees Celsius. The hot plasma travels quickly parallel to the magnetic field, but slowly across the field toward the wall.

Plasma at the outer boundary flows into a separate chamber where it strikes the divertor surface and is neutralized. The divertor prevents plasma from striking and degrading the chamber walls and generating impurities that would cool and contaminate the main plasma. Constructed of graphite to survive high heat loads, the divertor can be eroded by hydrogen plasmas.

"Because today's research fusion machines do not operate for long periods [typically less than 10 minutes a day], erosion has not been a significant problem," says Bill Wampler, Sandia researcher studying divertor wall erosion. "But when we eventually have a fusion reactor working all the time, erosion will be a big issue."

The DiMES research team included Wampler, Stuart Van Deusen and Bob Bastasz of Sandia, Dennis Whyte of the University of California at San Diego, and Clement Wong and Phil West of General Atomics.

Simply put, the team showed that divertor erosion can be eliminated by causing plasmas to detach. Detached divertor plasmas, which have been studied for several years as a method to spread power deposition over larger areas, result by injecting deuterium gas into the plasma in the divertor. The gas cools the plasma near the divertor surface but does not significantly cool the core plasma in the main chamber.

The lower temperature of the detached plasma at the divertor walls reduces the energy of hydrogen atoms and ions impinging on the divertor surface. These new experiments show erosion by "physical sputtering" (erosion process where incoming atoms have sufficient energy to knock atoms off a surface) is eliminated because the energy of particles hitting the material surface drops below the erosion threshold.

To determine this, the researchers exposed graphite cylinders and various metal films to divertor plasmas. The researchers measured erosion resulting from these exposures using ion-beam analysis. No erosion was detected with detached plasmas. In contrast, high erosion rates occurred for the normal "attached" divertor plasmas obtained without deuterium injection in the divertor.

Wong, the General Atomics researcher who is also chair of the Fusion Energy Division, American Nuclear Society, 1999-2000, says the joint nature of this research played an important role in its success.

"The significant results obtained by the DiMES program show very clearly the benefits of close collaboration between different technical disciplines and institutions," Wong says.

But, says Wampler, more research is needed.

"We still have much more work to do, but our preliminary results show detached plasma operation provides an effective way to eliminate erosion in the divertor. We may have resolved a major problem in fusion," Wampler says.
-end-
General Atomics, founded in 1955, is involved in high-technology nuclear energy, commercial, and defense-related research, development and manufacturing.

Sandia is a multiprogram DOE laboratory, operated by a subsidiary of Lockheed Martin Corp. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major research and development responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Story and photo available at http://www.sandia.gov/media/NewsRel/NR2000/fusion.htm Technical contact: Sandia: Bill Wampler, 505-844-4114, wrwampl@sandia.gov




DOE/Sandia National Laboratories

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.