Rensselaer researchers create tiny magnetic diamonds on the nanoscale

September 12, 2005

Troy, N.Y. - Diamonds have always been alluring, but now a team of scientists has made them truly magnetic -- on the nanoscale.

In a paper published in the Aug. 26 issue of Physical Review Letters, the researchers report a technique to make magnetic diamond particles only 4-5 nanometers across. The tiny diamond magnets could find use in fields ranging from medicine to information technology.

Ferromagnetism has been historically reserved for metals, but scientists are becoming increasingly interested in the prospect of creating metal-free magnets, particularly from carbon-based materials. Diamond is a naturally occurring crystalline form of carbon.

Magnets made from carbon could have a number of advantages over their metal counterparts. "Carbon is lightweight, very stable, simple to process, and less expensive to produce," says Saikat Talapatra, a post-doctoral research associate with the Rensselaer Nanotechnology Center at Rensselaer Polytechnic Institute.

Talapatra is lead author of the study, which also included researchers from NASA Ames Research Center in California; Richmond, Va.-based Philip Morris USA; and the University at Albany.

"These findings could lead to a systematic, controllable method for producing magnetic carbon materials," says Pulickel Ajayan, the Henry Burlage Professor of Materials Science and Engineering at Rensselaer and co-author of the paper. "Though the value of the magnetization is much lower than in regular magnets, the nature of the spin interactions in carbon could lead to a number of potential applications."

Magnetic nanocarbons could make promising structures for high-density memory devices and in quantum computers. And because carbon materials are generally compatible with living tissue, these nanostructures could be useful in medical applications such as magnetic resonance imaging (MRI) and the targeted delivery of drugs to specific parts of the body.

Researchers have long known that defects and irregularities in pure carbon materials can give rise to electrons that are not paired with other electrons. Each "unpaired" electron produces a magnetic field by its spinning, and when all of the spins align, the material itself becomes magnetic. Talapatra and his colleagues have developed a way to modify the structure of carbon in a controlled manner by firing clusters of atoms at the diamond particles. This produces magnetism at room temperature, and the total strength of the magnetism depends on the amount and type of atoms used.

The next step, according to Talapatra, is to calculate how the types of defects and their concentration in the pure carbon structure affect the magnitude of magnetism. "We are also working toward developing simpler ways to make magnetic nanocarbons in a more controlled fashion," he says. "The long-term goal is to show some real applications using these structures."

Other Rensselaer researchers involved in the work were Robert Vajtai, laboratory manager for the Rensselaer Nanotechnology Center; Ganapathiraman Ramanath, associate professor of materials science and engineering; Mutsuhiro Shima, assistant professor of materials science and engineering; Gopal Ganesan Pethuraja, research engineer with the Center for Integrated Electronics; and Taegyun Kim, graduate student in materials science and engineering.
-end-
The research was funded by NASA, Philip Morris USA, and the National Science Foundation.

Nanotechnology at Rensselaer
In September 2001, the National Science Foundation selected Rensselaer as one of the six original sites nationwide for a new Nanoscale Science and Engineering Center (NSEC). As part of the U.S. National Nanotechnology Initiative, the program is housed within the Rensselaer Nanotechnology Center and forms a partnership between Rensselaer, the University of Illinois at Urbana-Champaign, and Los Alamos National Laboratory. The mission of Rensselaer's Center for Directed Assembly of Nanostructures is to integrate research, education, and technology dissemination, and to serve as a national resource for fundamental knowledge and applications in directed assembly of nanostructures. The five other original NSECs are located at Harvard University, Columbia University, Cornell University, Northwestern University, and Rice University.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation's oldest technological university. The university offers bachelor's, master's, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Rensselaer Polytechnic Institute

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.