Brown team creates uncanny cell replicas for treatment, research

September 12, 2006

PROVIDENCE, R.I. -- Call them genuine fakes. Brown University biomedical engineer Diane Hoffman-Kim and her research team have made plastic replicas of real cells through a novel two-part molding process. The copies looked so authentic, Hoffman-Kim couldn't tell if they were real or rubber at first.

"When I saw the images from the microscope, I said, 'OK, I can't tell the difference,'" Hoffman-Kim said. "It was pretty amazing - and just what we wanted."

A description of the replicas, their ability to support cell growth, and their possible applications in science and medicine are published in Langmuir, a journal of the American Chemical Society.

The main cells used in the experiments were Schwann cells, which protect peripheral nerves by wrapping around their axons to create insulating myelin sheaths. Schwann cells also direct axon growth during cell development and repair.

Hoffman-Kim, an assistant professor in the Department of Molecular Pharmacology, Physiology and Biotechnology and the Division of Engineering, said the realistic replicas could be used in laboratories to help scientists understand how these critical support cells sustain and direct nerve growth.

The replicas could also, eventually, be used in hospitals to help doctors regenerate nerves. If a patient's nerves are severed during an auto accident or other injury, a device coated with the imitation cells - a contraption called a nerve guidance channel - could be implanted into the injured area to help stimulate nerve growth and repair damaged tissue. Tissue engineers around the world are testing nerve guidance channels in animals and, in a few cases, in humans.

"If the goal is to regenerate nerves, you want to create the right environment for cells to grow," Hoffman-Kim said. "One way to get the environment right: Make the surface that cells grow on as realistic as possible."

But the cell duplication technique could have all sorts of applications. In the Langmuir article, Hoffman-Kim and her team also show results from experiments in which smooth muscle cells were reproduced. Researchers plan to experiment with other cell types.

"What's exciting about the approach is that it could be broadly applied in both bench science and in tissue engineering," she said. "Researchers are always trying to get cells to grow well outside the body. A lot of factors affect that growth, like air temperature or the carbon dioxide supply in the lab incubator. Topography, or the surfaces cells grow on, also plays a role."

Jan Bruder, a graduate student in Brown's Artificial Organs, Biomaterials and Cellular Technology program, is the lead author of the journal article. With Hoffman-Kim, Bruder came up with the idea for the two-step molding process - one akin to making sculpture.

Cells were grown in the lab then preserved in chemicals for stiffening. Next, researchers poured liquid silicon over the cells and let the mixture harden. Now for the tricky part - peeling the thin, transparent membrane off without tearing it. The result: An impression. To make a relief, which would show shapes rising up from the surface, the pour-and-peel process was repeated.

To see if the cells looked authentic, the team had to pinpoint cells on the original model and find those same cells on the replica. Then, using four kinds of microscopes, they measured the cells' length and height for comparison. The fakes were the same size - and they looked arrestingly real, right down to tiny bumps in the nucleus. The team then used the replicas to grow neurons taken from rats. The experiments worked.
-end-
Other members of the research team include Nicholas Monu, a Brown Medical School student, and Michael Harrison, a graduate student in the Artificial Organs, Biomaterials and Cellular Technology program.

The Whitaker Foundation and the Brown University Research Seed Fund Program funded the work.

Brown University

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.