Blood and brain fluid change first in Huntington's disease

September 12, 2018

A simple blood test can detect the earliest changes caused by Huntington's disease, even before scans can pick up any signs in the brain, a new UCL-led study has found.

The study, published today in Science Translational Medicine, builds on recent evidence by the same research team, which found that a novel blood test can predict the onset and track the progression of the disease in people who carry the gene responsible for the incurable and fatal brain disorder.

In conducting this latest study, the team developed a tool kit to guide measurement of two early biomarkers of Huntington's disease found in blood and brain fluid, for use in clinical trials that seek to find the first disease-altering treatment for Huntington's.

"Many people who develop Huntington's report subtle signs such as with mood or coordination, in what's called the prodromal stage before any changes can be detected by brain scans. We've found that blood testing could help identify groups of people with very early neurodegeneration to help us run clinical trials of drugs to prevent symptoms," said lead author Dr Ed Wild of the UCL Huntington's Disease Centre, UCL Institute of Neurology.

"We were surprised to find the blood tests could pick up signs even before any evidence of neurodegeneration could be seen in brain scans."

The researchers caution that the blood test is not yet helpful for individual patients.

"More research is needed to clarify the clinical potential of this test. We hope it can help to develop the first drugs to slow Huntington's, and if they become available, then hopefully this test could help guide decisions on when to begin treatment," said first author Lauren Byrne (UCL Institute of Neurology).

Huntington's disease is caused by a single known genetic mutation, and each child of a mutation carrier has a 50% chance of inheriting the disease. While most people with the mutation start to show symptoms between 30 to 50 years of age, the onset of the disease can happen at any age.

The study involved 40 people with Huntington's disease who were at different stages of the disease, 20 people who carried the genetic mutation but had not yet been diagnosed with Huntington's, and 20 healthy control subjects, recruited through the National Hospital for Neurology and Neurosurgery.

The researchers took samples of blood plasma and cerebrospinal (brain) fluid, and tested them for both neurofilament light (NfL) protein, which is often a product of nerve cell damage, and for concentration of the mutant huntingtin (mHTT) protein that causes the disease. They then compared these results to clinical measures such as brain area volumes from MRI scans, and a few motor and cognitive tests.

They found that measures of NfL in blood were most strongly associated with all clinical measures.

The research team used the data to model what stage of the disease or of pre-Huntington's each person was in. From their modelling, supported by a comparison with a much larger cohort of patients, they could determine that the first identifiable changes are the quantity of the mutant gene in brain fluid, and of NfL in blood and brain fluid.

The researchers say their findings could be vital for clinical trials such as an upcoming trial to determine whether the drug RG6042 (formerly IONIS-HTTRx) can slow the progression of the disease.

"We are living in a time of incredible advancement in the field of neurodegeneration, and research in Huntington's disease is paving the way towards interventions that can change people's lives. Developing tools to track biological and clinical changes, and identify candidates to participate in clinical trials, is vital for the success of such trials," said co-author Dr Filipe Brogueira Rodrigues (UCL Institute of Neurology).
-end-
The study was conducted by researchers at UCL Institute of Neurology, UCL Centre for Medical Image Computing and the National Hospital for Neurology and Neurosurgery and funded by the Medical Research Council UK (MRC), the CHDI Foundation, Wellcome, Engineering and Physical Sciences Research Council (EPSRC) and Hoffman La Roche, with support from the National Institute for Health Research University College London Hospitals Biomedical Research Centre, the UK Dementia Research Institute, and the Horizon 2020 Framework Programme.

More about Huntington's disease:

Huntington's disease is a fatal genetic neurological disease. It usually develops in adulthood and causes abnormal involuntary movements, psychiatric symptoms and dementia. Approximately 10,000 people in the UK have HD with around 25,000 at risk. It is incurable, and no effective treatments exist to slow it down. Patients usually die within 20 years of the start of symptoms.

University College London

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.