How relapse happens: Opiates reduce the brain's ability to form, maintain synapses

September 12, 2019

BUFFALO, N.Y. -- Exposure to heroin sharply reduces levels of the protein necessary for developing and maintaining the brain's synapses, a preclinical study by University at Buffalo researchers has found. The development of addiction relapse is directly related to the impact that reductions in this protein, called drebrin, have on specific cells involved in the brain's pleasure-seeking/reward pathways.

The UB research paper, one of the first to trace the pathophysiology of addiction relapse, was published online on Sept. 12 in Nature Communications.

The neurobiology of relapse

"Very few research studies have examined the molecular mechanisms of heroin relapse and there is almost nothing published about the specific cell types that these changes occur in," said David Dietz, PhD, senior author on the paper, chair of the Department of Pharmacology and Toxicology in the Jacobs School of Medicine and Biomedical Sciences at UB and a faculty member in UB's neuroscience program.

"These findings lead us to a better understanding of the neurobiology of relapse to opiates. In combination with other findings, the research will hopefully provide avenues toward treatments that can prevent relapse behaviors."

Most currently available treatments are replacement therapies, none of which address the fundamental changes that occur in addiction and lead to relapse, which remains an intractable issue.

Dietz and his colleagues have focused much of their research on relapse after opiate addiction and withdrawal and the structural plasticity in the brain that they cause. He was recently awarded more than $2 million from the National Institutes of Health (NIH) to continue research on drebrin and other potential targets for treating drug addiction.

Drebrin was of interest because loss of the protein has been previously implicated in brain diseases, such as Alzheimer's disease and Down syndrome.

"Since drebrin is responsible for developing and maintaining synapses, we wondered if it was also involved in addiction to drugs of abuse, ultimately leading to relapse," said Dietz.

In experiments with rodents, the UB team determined that exposure to heroin and morphine reduced drebrin levels in the nucleus accumbens, a key part of the brain's reward pathway.

Synaptic rewiring

The researchers found that opiate exposure causes synaptic rewiring in this part of the brain, as well as a decrease in drenditic spines, the protrusions on neurons that play key roles in neuronal transmission, learning and memory.

"Opiates fundamentally change how the brain communicates with itself," Dietz said.

The researchers found that the reduction in drebrin levels is regulated by changes in how an enzyme called HDAC2 facilitates access to the DNA. In addition, the study demonstrates that these changes occur exclusively in a specific type of cell within the nucleus accumbens, known as D1, which contains medium spiny neurons, the type of cells that make up this part of the reward center.

"Restoring drebrin back to normal levels in these specific brain cells was sufficient to reduce relapse behaviors," said Dietz.

The research provides a critical and understudied insight into the mechanisms behind addiction and relapse behaviors, which in combination with future studies may lead to a novel and effective treatment to prevent relapse.

"Our lab is focused on improving our understanding of the neurobiology of addiction and relapse so that we can figure out the best way to target these pathways for future therapeutic use," Dietz said.
-end-
In addition to Dietz, UB co-authors are Jennifer A. Martin; Craig T. Werner; Swarup Mitra; Zi-Jun Wang; Pedro H. Gobira; Andrew F. Stewart; Jay Zhang; Kyra Erias; Justin N. Siemian; Lauren. E. Mueller; Jun-Xu Li; and Karen C. Dietz of the Department of Pharmacology and Toxicology and Ping Zhong and Zhen Yan of the Department of Physiology and Biophysics.

Devin Hagerty and Amy M. Gancarz of California State University, Bakersfield; Rachel L. Neve of Massachusetts General Hospital; Mary Kay Lobo and Ramesh Chandra of the University of Maryland School of Medicine are also co-authors.

The work was funded by the National Institute on Drug Abuse of the NIH.

University at Buffalo

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.