Nav: Home

Discovery concerning the nervous system overturns a previous theory

September 12, 2019

It appears that when our nervous system is developing, only the most viable neurons survive, while immature neurons are weeded out and die. This is shown in a ground-breaking discovery by researchers at Karolinska Institutet in Sweden. The results indicate that the long-standing neurotrophic theory, which states that chance determines which cells will form the nervous system, needs to be revised.

During the early stages of the development of the nervous system, an excess of neurons is generated. At a certain time, a large portion of these cells then die, which is a necessary step for the proper formation of the nervous system. The process takes about 24 hours and in certain parts of the nervous system roughly half of all neurons disappear.

Researchers have previously believed this has been a random process, in which all cells have had an equal chance of survival. However, researchers from Karolinska Institute have now publishing a study in Nature Communications which shows that cell death instead appears to be controlled by a mechanism that weeds out the less fitted cells.

"The cells that survive are more mature and inclined to form synapses with other nerve cells", says Saida Hadjab, who has coordinated the study together with Francois Lallemend. They are both researchers at the Department of Neuroscience at Karolinska Institutet.

Several years ago, Hadjab and Lallemend noted that the early neurons are different. On the surface of them are receivers of growth factors that stimulate their survival. Hadjab and Lallemend discovered that certain neurons had more of these receivers than others. They started to suspect that cell death is somehow controlled, so that only certain selected cells survived.

They have now conducted with their team a detailed study of individual neurons in the early nervous system in mice and have among other things discovered which genes are active. Their mapping has revealed two distinct molecular patterns that determine the fate of these cells. The cells that are the most capable of growing and forming connections to other neurons survive, while the more immature cells die.

The study has been performed in the peripheral sensory nervous system. Whether cell death is controlled in the same way in other parts of the nervous system remains to be discovered.

"This discovery can help us understand the brain and the development of the nervous system on a different level. Earlier studies have mainly studied the environment surrounding the cell, and neuronal population as homogenous cell type. One has not examined the actual neurons individually, their fitness and how different they are", says Francois Lallemend.

This discovery could potentially be significant to the treatment of different neurological diseases. For example, in the case of Parkinson's Disease, doctors have tried to transplant healthy stem cells in patients, but the majority of cells die shortly after the treatment. It is possible that the treatment could become more successful if the less fitted cells were weeded out before the transplant, so that the patient was only given viable neurons.
-end-
The study has been carried out in collaboration with other researchers at the Karolinska Institute, as well as researchers at the University of Strasbourg, the University of Côte d'Azur, the Pasteur Institute, the Medical University in Vienna, IBDM in Marseille and EPFL in Lausanne. The study was funded by contributions from the Karolinska Institute, the Swedish Research Council, the Knut and Alice Wallenberg foundation, StratNeuro, the Ragnar Söderberg foundation, the Ming Wai Lau Center and the European Research Council.

Publication: "A cell fitness selection model for neuronal survival during development", Yiqiao Wang, Haohao Wu, Paula Fontanet, Simone Codeluppi, Natalia Akkuratova, Charles Petitpré, Yongtao Xue-Franzén, Karen Niederreither, Anil Sharma, Fabio Da Silva, Glenda Comai, Gulistan Agirman, Domenico Palumberi, Sten Linnarsson, Igor Adameyko, Aziz Moqrich, Andreas Schedl, Gioele La Manno, Saida Hadjab & François Lallemend. Nature Communications, September 12, 2019, doi:10.1038/s41467-019-12119-3

Karolinska Institutet

Related Neurons Articles:

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.