Nav: Home

New insights into how astrocytes help the brain process information

September 12, 2019

A collaboration between the laboratories of Vincent Bonin (NERF, empowered by VIB, imec and KU Leuven) and Matthew Holt (VIB-KU Leuven Center for Brain & Disease Research) reveals that noradrenaline plays a key role in how astrocytes - star-shaped cells in the brain closely associated with neurons - track distinct information during behavior. The researchers found that astrocytes can integrate information on arousal state and sensory experience. The results are published in Current Biology.

Noradrenaline in the brain

When we are aroused the hormone noradrenaline is secreted, which helps us to better remember emotional situations compared to neutral ones. In earlier studies, noradrenaline was shown to directly influence synapses - information exchange points between neurons - in brain regions responsible for processing emotions. However, noradrenaline is released across the entire brain and stimulates a class of non-neuronal cells, astrocytes, which listen and respond to locally active neurons. A question remained: do astrocytes integrate this brain-wide signal with the specific activity of local neuronal networks?

Watching astrocytes

To answer this question, Drs. Michal Slezak (VIB-KU Leuven Center for Brain & Disease Research) and Steffen Kandler (NERF) used a special microscope to monitor the activity of astrocytes in mice. When mice were presented with visual stimuli, in some cases astrocytes faithfully responded. "It was so exciting! We know that if you check neuronal activity in the brain region receiving inputs from the retina that it exactly mirrors the movement of the visual stimulus. But this is the first time we saw this pattern when watching non-neuronal cells", says Dr. Bonin co-lead author of the study.

However, in some cases visual stimuli did not elicit any response from the astrocytes. The mystery was solved when each event of visual stimulation was analyzed independently - it turned out that astrocytes were active only when the mouse was in motion, and they were silent when the mouse was stationary. Slezak and Kandler further tested whether noradrenaline is the molecule responsible for this effect. They used a compound which depletes the brain of noradrenaline and found that astrocytic responses were largely decreased, even when mice were in motion. In other words, noradrenaline is necessary for astrocytes to respond to local stimulation: astrocytes are effectively integrating sensory and behavioral information.

Big impact of little-known cells

"This novel finding opens many additional questions. Previous studies on the action of noradrenaline on brain function focused entirely on neurons. Our data highlights that astrocytes can play a much more substantial role than previously thought", says Dr. Slezak.

"The idea that astrocytes respond to neuronal activity has been floating around for some time, but evidence for such a system has been lacking in vivo. Our work fills this gap. I just don't think anyone really expected that the response would be so heavily influenced by the behavioral state of the animal," adds Dr. Matthew Holt, joint lead author on the study. "We now have to work out how this operates at the molecular level and investigate the function consequences for the brain."
-end-
Publication

Distinct Mechanisms for Visual and Motor-Related Astrocyte Responses in Mouse Visual Cortex, Slezak et al., Current Biology 2019

DOI number: https://doi.org/10.1016/j.cub.2019.07.078

Questions from patients

A breakthrough in research is not the same as a breakthrough in medicine. The realizations of VIB researchers can form the basis of new therapies, but the development path still takes years. This can raise a lot of questions. That is why we ask you to please refer questions in your report or article to the email address that VIB makes available for this purpose: patienteninfo@vib.be. Everyone can submit questions concerning this and other medically-oriented research directly to VIB via this address.

Funding

Matthew Holt: European Research Council (Starting Grant 281961), Fonds voor Wetenschappelijk Onderzoek Vlaanderen (FWO) (Grants 1523014N and 1527315N) and VIB Institutional Funding

Vincent Bonin: FWO (Grant G0D0516N), KU Leuven Research Council (Grant C14/16/048) and NERF Institutional Funding

Michal Slezak: Marie Curie Intra-European Fellowship (331018)

VIB (the Flanders Institute for Biotechnology)

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...