Nav: Home

Cells that make bone marrow also travel to the womb to help pregnancy

September 12, 2019

Bone marrow-derived cells play a role in changes to the mouse uterus before and during pregnancy, enabling implantation of the embryo and reducing pregnancy loss, according to research published September 12 in the open-access journal PLOS Biology. Although the study was done in mice, it raises the possibility that dysfunction of bone marrow-derived progenitor cells may contribute to implantation failure and pregnancy loss in women.

Bone marrow progenitors can become either blood or tissue cells. Within the uterus they differentiate into endometrial tissue cells in the lining of the womb, but until now it was not known if they have a function in pregnancy. Reshef Tal and colleagues from Yale School of Medicine developed a bone marrow transplantation protocol that preserved ovary and reproductive function, allowing them for the first time to track these cells in pregnancy, showing that during pregnancy cells from the bone marrow were preferentially recruited to the uterus and were concentrated near the site of implantation, on the maternal side of the placenta. The authors demonstrate that after reaching the uterus, these cells proliferate and become so-called decidual cells, specialized uterine cells which are critical for nurturing the embryo and supporting its implantation.

The authors then made use of mice that lack Hoxa11, a protein which is found in uterine cells but also in bone marrow-derived progenitor cells; these mice are known to have defects in the womb lining and are unable to become pregnant. Mice with partial Hoxa11 deficiency can become pregnant but have recurrent pregnancy losses. Strikingly, the authors found that after receiving bone marrow transplants from healthy mice, the Hoxa11-deficient mice switched on genes involved in preparing the womb lining for pregnancy and became pregnant. In mice with partial Hoxa11 deficiency, bone marrow transplant from healthy mice prevented pregnancy loss resulting in normal litter numbers.

Recurrent pregnancy loss in humans affects 1-2% of couples and is usually unexplained. Hoxa11 production has been implicated in human implantation and several studies have shown that levels of Hoxa11 protein are decreased in conditions associated with pregnancy failure such as endometriosis, submucosal leiomyomas and pregnancy loss. The findings reveal the role of Hoxa11-positive bone marrow-derived progenitor cells in the mouse uterus and the authors suggest further work be done to investigate the role of these cells in human implantation and pregnancy.

The authors of the study say, "The common thinking about bone marrow in relation to pregnancy is that it is the origin of many immune cells which play important roles at the maternal-fetal interface to promote successful pregnancy. This study shows for the first time that adult bone marrow is also a source of non-immune cells in the pregnant uterus. We demonstrate that bone marrow progenitors are mobilized to the circulation in pregnancy and home to the uterus where they become decidual cells and have profound effects on gene expression in the uterine environment and ultimately help prevent pregnancy loss."

The authors go on to say, "We are currently translating these findings into humans to better understand the role that these cells play in recurrent implantation failure and recurrent pregnancy loss, two conditions that are unexplained in the majority of cases and have no effective treatment. The findings of this study open exciting new avenues for research into the cause of these conditions as well as developing new treatments for women suffering from them."
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Biology: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000421

Citation: Tal R, Shaikh S, Pallavi P, Tal A, López-Giráldez F, Lyu F, et al. (2019) Adult bone marrow progenitors become decidual cells and contribute to embryo implantation and pregnancy. PLoS Biol 17(9): e3000421. https://doi.org/10.1371/journal.pbio.3000421

Image Caption: An immunofluorescent section of a pregnant mouse uterus on embryonic day E9.5 showing the distribution of bone marrow-derived cells, labeled with green fluorescent protein (GFP). Cell nuclei are labeled with DAPI (blue). Numerous bone marrow-derived cells are recruited to the pregnant uterus where they contribute to embryo implantation and pregnancy.

Image Credit: Reshef Tal

Funding: This work was supported by funds from NIH grant RO1HD076422 (to HST), 5K12HD047018 (to HST and RT), Ferring/New England Fertility Society grant (to RT), American Society for Reproductive Medicine (ASRM) grant (to RT), and the Robert E. Leet and Clara Guthrie Patterson Fellowship award (to RT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Bone Marrow Articles:

3D atlas of the bone marrow -- in single cell resolution
Stem cells located in the bone marrow generate and control the production of blood and immune cells.
Dangerous bone marrow, organ transplant complication explained
Scientists have discovered the molecular mechanism behind how the common cytomegalovirus can wreak havoc on bone marrow and organ transplant patients, according to a paper published in the journal Cell & Host Microbe.
Viagra shows promise for use in bone marrow transplants
Researchers at UC Santa Cruz have demonstrated a new, rapid method to obtain donor stem cells for bone marrow transplants using a combination of Viagra and a second drug called Plerixafor.
Bone marrow may be the missing piece of the fertility puzzle
A woman's bone marrow may determine her ability to start and sustain a pregnancy, report Yale researchers in PLOS Biology.
Cells that make bone marrow also travel to the womb to help pregnancy
Bone marrow-derived cells play a role in changes to the mouse uterus before and during pregnancy, enabling implantation of the embryo and reducing pregnancy loss, according to research published Sept.
Uncovering secrets of bone marrow cells and how they differentiate
Researchers mapped distinct bone marrow niche populations and their differentiation paths for the bone marrow factory that starts from mesenchymal stromal cells and ends with three types of cells -- fat cells, bone-making cells and cartilage-making cells.
Zebrafish help researchers explore alternatives to bone marrow donation
UC San Diego researchers discover new role for epidermal growth factor receptor in blood stem cell development, a crucial key to being able to generate them in the laboratory, and circumvent the need for bone marrow donation.
New material will allow abandoning bone marrow transplantation
Scientists from the National University of Science and Technology 'MISIS' developed nanomaterial, which will be able to restore the internal structure of bones damaged due to osteoporosis and osteomyelitis.
Blood diseases cured with bone marrow transplant
Doubling the low amount of total body radiation delivered to patients undergoing bone marrow transplants with donor cells that are only 'half-matched' increased the rate of engraftment from only about 50 percent to nearly 100 percent, according to a new study by Johns Hopkins researchers.
Vitamin D and immune cells stimulate bone marrow disease
The bone marrow disease myelofibrosis is stimulated by excessive signaling from vitamin D and immune cells known as macrophages, reveals a Japanese research team.
More Bone Marrow News and Bone Marrow Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.