Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

September 12, 2019

Topological insulators are a game-changing class of materials; charged particles can flow freely on their edges and route themselves around defects, but can't pass through their interiors. This perfect surface conduction holds promise for fast and efficient electronic circuits, though engineers must contend with the fact that the interiors of such materials are effectively wasted space.

Now, researchers from the University of Pennsylvania, where topological insulators were first discovered in 2005, have shown a way to fulfill that promise in a field where physical space is at an even bigger premium: photonics. They have shown, for the first time, a way for a topological insulator to make use of its entire footprint.

By using photons instead of electrons, photonic chips promise even faster data transfer speeds and information-dense applications, but the components necessary for building them remain considerably larger than their electronic counterparts, due to the lack of efficient data-routing architecture.

A photonic topological insulator with edges that can be redefined on the fly, however, would help solve the footprint problem. Being able to route these "roads" around one another as needed means the entire interior bulk could be used to efficiently build data links.

Researchers at Penn's School of Engineering and Applied Science have built and tested such a device for the first time, publishing their findings in the journal Science.

"This could have a big impact on large-information capacity applications, like 5G, or even 6G, cellphone networks," says Liang Feng, assistant professor in Penn Engineering's Departments of Materials Science and Engineering and Electrical and Systems Engineering.

"We think this may be the first practical application of topological insulators," he says.

Feng led the study along with graduate student Han Zhao, a member of his lab. Fellow lab members Xingdu Qiao, Tianwei Wu and Bikashkali Midya, along with Stefano Longhi, professor at the Polytechnic University of Milan in Italy, also contributed to the research.

The data centers that form the backbone of communication networks route calls, texts, email attachments and streaming movies to and between millions of cellular devices. But as the amount of data flowing through these data centers increases, so does the need for high-capacity data routing that can keep up with the demand.

Switching from electrons to photons would speed up this process for the upcoming information explosion, but engineers must first design a whole new library of devices for getting those photons from input to output without mixing them up and losing them in the process.

Advances in data-processing speed in electronics have relied on making their core components smaller and smaller, but photonics researchers have needed to take a different approach.

Feng, Zhao and their colleagues set out to maximize the complexity of photonic waveguides -- the prescribed paths individual photons take on their way from input to output -- on a given chip.

The researchers' prototype photonic chip is roughly 250 microns squared, and features a tessellated grid of oval rings. By "pumping" the chip with an external laser, targeted to alter the photonic properties of individual rings, they are able to alter which of those rings constitute the boundaries of a waveguide.

The result is a reconfigurable topological insulator. By changing the pumping patterns, photons headed in different directions can be routed around each other, allowing photons from multiple data packets to travel through the chip simultaneously, like a complicated highway interchange.

"We can define the edges such that photons can go from any input port to any output port, or even to multiple outputs at once," Feng says. "That means the ports-to-footprint ratio is at least two orders of magnitude greater than current state-of-the-art photonic routers and switches."

Increased efficiency and speed is not the only advantage of the researchers' approach.

"Our system is also robust against unexpected defects," Zhao says. "If one of the rings is damaged by a grain of dust, for example, that damage is just making a new set of edges that we can send photons along."

Since the system requires an off-chip laser source to redefine the shape of the waveguides, the researcher's system is not yet small enough to be useful for data centers or other commercial applications. Next steps for the team will be to establish a fast reconfiguring scheme in an integrated fashion.
-end-


University of Pennsylvania

Related Photons Articles from Brightsurf:

An electrical trigger fires single, identical photons
Researchers at Berkeley Lab have found a way to generate single, identical photons on demand.

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

Physicists "trick" photons into behaving like electrons using a "synthetic" magnetic field
Scientists have discovered an elegant way of manipulating light using a ''synthetic'' Lorentz force -- which in nature is responsible for many fascinating phenomena including the Aurora Borealis.

Scientists use photons as threads to weave novel forms of matter
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments.

The nature of nuclear forces imprinted in photons
IFJ PAN scientists together with colleagues from the University of Milano (Italy) and other countries confirmed the need to include the three-nucleon interactions in the description of electromagnetic transitions in the 20O atomic nucleus.

Pushing photons
UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.

The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.

What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.

Read More: Photons News and Photons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.