Hydrocarbons in the deep Earth?

September 13, 2004

National Science Foundation, NASA Astrobiology Institute, US Department of Energy, National Nuclear Security Administration, Carnegie/DOE Alliance CenterWashington, D.C. In an era of rising oil and gas prices, the possibility that there are untapped reserves is enticing. Since the first U.S. oil well hit pay dirt in 1859, commercially viable wells of oil and gas commonly have been drilled no deeper than 3 to 5 miles into Earth's crust. "These experiments point to the possibility of an inorganic source of hydrocarbons at great depth in the Earth--that is, hydrocarbons that come from simple reactions between water and rock and not just from the decomposition of living organisms," stated Dr. Russell Hemley of the Carnegie Institution's Geophysical Laboratory, and co-author of a study published in the September 13-17, early, on-line edition of the Proceedings of the National Academy of Sciences.*

Methane is the most abundant hydrocarbon in the Earth's crust and it is the main component of natural gas. Often, gas reserves are accompanied by liquid petroleum. However these reserves, at 3 to 5 miles beneath the surface, exist in relatively low-pressure conditions. Whether hydrocarbons exist deeper--and could even be formed from non-biological matter--has been the subject of much debate. As depth increases in the Earth, the pressures can become so crushing that molecules are squeezed into new forms and the temperature conditions are like an inferno making matter behave much differently. The team of scientists performed a series of experiments at Carnegie, the Carnegie-managed High Pressure Collaborative Access Team (HPCAT) at Argonne National Laboratory, and at Indiana University South Bend--together with calculations performed at Lawrence Livermore National Laboratory--to mimic conditions that occur in Earth's upper mantle, which underlies the crust at depths of about 12 to 37 miles (20 to 60 km) beneath the continents.

With a diamond anvil cell, the scientists squeezed materials common at Earth's surface--iron oxide (FeO), calcite (CaCO3) and water-- to pressures ranging from 50,000 to 110,000 times the pressure at sea level ( 5 to 11 gigapascals). They heated the samples using two techniques--focused laser light and the so-called resistive heating method--to temperatures up to 2,700 degrees F (1500 degrees C). The researchers found that methane formed by reducing the carbon in calcite over a wide range of temperatures and pressures. The best conditions were at temperatures and pressures of about 1000 degrees F and less than 70,000 times atmospheric pressure.

Dr. Henry Scott, of Indiana University South Bend, related the significance of the experiments to conventional hydrocarbon resources: "Although it is well-established that commercial petroleum originates from the decay of once-living organisms, these results support the possibility that the deep Earth may produce abiogenic hydrocarbons of its own."

"This paper is important," remarked Dr. Freeman Dyson, professor emeritus at the Institute for Advanced Study at Princeton who reviewed the study. "Not because it settles the question whether the origin of natural gas and petroleum is organic or inorganic, but because it gives us tools to attack the question experimentally. If the answer turns out to be inorganic, this has huge implications for the ecology and economy of our planet as well as for the chemistry of other planets."
*Authors of the PNAS study are the following: Dr. Henry P. Scott, Indian University, South Bend, IN; Drs. Russell Hemley and Ho-kwang Mao of the Carnegie Institution's Geophysical Laboratory, Washington, DC; Dr. Dudley Herschbach of Harvard University, Cambridge MA: Drs. Laurence Fried, Michael Howard and Sorin Bastea of Lawrence Livermore National Laboratory, Livermore, CA. Contact at the Carnegie Institution's Geophysical Laboratory Dr. Russell Hemley 202-478-8951, e-mail hemley@gl.ciw.edu; Dr. Henry Scott at Indiana University South Bend, 574-520-5527 e-mail hpscott@iusb.edu; or Dr. Ho-kwang (Dave) Mao at Carnegie, 202-478-8960,e-mail mao@gl.ciw.edu

The Carnegie Institution of Washington (www.CarnegieInstitution.org) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

The NASA Astrobiology Institute (NAI) is a distributed national organization for research and training, which explores questions about the origin, evolution, distribution, and future of life in the universe. The institute is composed of 16 teams involving more than 500 scientists, educators, and students. It extends across the United States from Hawaii to Massachusetts.

Carnegie Institution for Science

Related Natural Gas Articles from Brightsurf:

Study reveals how to improve natural gas production in shale
A new hydrocarbon study contradicts conventional wisdom about how methane is trapped in rock, revealing a new strategy to more easily access the valuable energy resource.

A new material for separating CO2 from industrial waste gases, natural gas, or biogas
With the new material, developed at the University of Bayreuth, the greenhouse gas carbon dioxide (CO2) can be specifically separated from industrial waste gases, natural gas, or biogas, and thereby made available for recycling.

Study of natural gas flaring finds high risks to babies
Researchers from USC and UCLA have found that exposure to flaring -- the burning off of excess natural gas -- at oil and gas production sites is associated with 50% higher odds of preterm birth, compared with no exposure.

Sweet or sour natural gas
Natural gas that contains larger amounts of hydrogen sulfide (H(2)S) and carbon dioxide (CO(2)) is termed sour gas.

Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.

Effects of natural gas assessed in study of shale gas boom in Appalachian basin
A new study estimated the cumulative effects of the shale gas boom in the Appalachian basin in the early 2000s on air quality, climate change, and employment.

The uncertain role of natural gas in the transition to clean energy
A new MIT study examines the opposing roles of natural gas in the battle against climate change -- as a bridge toward a lower-emissions future, but also a contributor to greenhouse gas emissions.

Natural-gas leaks are important source of greenhouse gas emissions in Los Angeles
Liyin He, a Caltech graduate student, finds that methane in L.A.'s air correlates with the seasonal use of gas for heating homes and businesses

Enhanced natural gas storage to help reduce global warming
Researchers have designed plastic-based materials that can store natural gas more effectively.

Natural gas storage research could combat global warming
To help combat global warming, a team led by Dr.

Read More: Natural Gas News and Natural Gas Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.