What's next for gene therapy? Plastic

September 13, 2006

Blacksburg, Va., Sept. 13, 2006 -- Gene therapy depends upon foreign DNA, even viruses, to deliver genes, therapeutic proteins, or medicine to cells within the body. Many scientists are looking for better chaperones across the cell membrane. Virginia Tech researchers think polymer molecules can be created to do the job.

The research will be presented at the 232nd national meeting of the American Chemical Society in San Francisco September 10-14, 2006.

"We are applying our fundamental knowledge in polymer science to gene transfer agents," said Tim Long, professor of chemistry in the College of Science at Virginia Tech. "We are trying to understand how the structure of the chaperone impacts the efficiency of its ability to transfer DNA across the cell membrane."

Entire texts have been devoted to the subject, Long said. "But the researchers are usually biologists. Polymer scientists can bring a unique perspective that I think will lead to new advances."

Long's graduate student, John M. Layman of Richmond, Va., will share information regarding star-shaped, or highly-branched, molecules, which are extremely effective at transfection. Long's group has demonstrated that the topology of these particular polymers can be changed. "We can control the molecular shape and number of functional end groups," said Long. "We think that topology is important because it can influence the strength of the interaction with DNA and permit efficient release of the DNA for protein synthesis."

Layman will deliver the talk, "Influence of macromolecular architecture on nucleic acid transfection (POLY 611)," at 4 p.m., Wednesday, Sept. 13, in the Marriott Salon 14/15 as part of the International Biorelated Polymers Symposium. Authors are Layman, Anjali A. Hirani of the Virginia Tech-Wake Forest School of Biomedical Engineering (VT-WF SBES), Joseph M. Pickel and Phillip F. Britt of the Oak Ridge National Laboratory Chemical Sciences Division, Yong Woo Lee at VT-WF SBES, and Long.

"The paper defines a new paradigm for research," said Long. Layman, whose bachelor of science degree is from Virginia Commonwealth University in chemical engineering, "typifies the way we are going to educate students in the future," Long said. "He is an engineer working in chemistry on gene therapy. He collaborates with researchers in the Virginia Tech-Wake Forest School of Biomedical Engineering and Oak Ridge National Laboratory.
-end-
Layman is funded by the Macromolecular Interfaces with Life Sciences (MILES) National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT) program at Virginia Tech. This fall he will go to study with Brigitte Voit at the Max Bergman Institute in Dresden. (www.ipfdd.de/people/voit/homepage.html)

Learn about Layman's research at http://www.chem.vt.edu/chem-dept/tlong/ under the "Non-viral nucleic acid transfer agents" link.

Virginia Tech

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.