Nav: Home

Study advances efforts to screen all children for Type 1 diabetes

September 13, 2017

Researchers from the Johns Hopkins University School of Medicine, Stanford University and the University of Florida report the development of a novel antibody detection technology that holds promise for improving the accuracy of diagnostic tests for type 1 diabetes in young children and making populationwide screening practical.

In a report on the work, published in the Proceedings of the National Academy of Sciences on Sept. 5, the scientists say the technology enables screening for more autoimmune antibodies implicated in type 1 diabetes than current tests by incorporating a full-length pancreatic protein, called the pancreatic zinc transport 8 (ZnT8), that is targeted for autoimmune attack in people with the disease. By improving the accuracy of this test, researchers hope to catch the disease earlier and extend testing to all people. Type I diabetes, once known as juvenile diabetes, is a relatively rare form of the disorder in which the pancreas produces no insulin. It accounts for about 5 percent of all cases of diabetes in the United States.

"Although current tests are about 94 percent accurate in detecting the antibodies years before children and young adults lose all blood sugar control, they are not accurate enough to rely upon for populationwide screening, so current antibody testing is limited to confirming diagnosis in symptomatic children and adults. Increasing the test accuracy will help expand screening for asymptomatic type 1 diabetes into the general population," says Dax Fu, Ph.D., associate professor of physiology at the Johns Hopkins University School of Medicine. At the clinical onset of type 1 diabetes, most children and young adults develop symptoms such as fainting, exhaustion, vomiting and confusion. And by then, a large majority of pancreatic beta cells may already be lost. "Presymptomatic diagnosis will provide the benefit of beginning preventative therapies" says Fu.

Fu explains that ZnT8 has long been known as a major biomarker of type 1 diabetes, but until now it has been very difficult to efficiently incorporate the entire protein into assays because it loses its shape when removed from pancreatic cells, rendering it unrecognizable to antibodies. The new technology addresses the problem by first inserting the protein into a biomimetic membrane, similar to its natural environment in cells, and reconstituting it into its natural shape.

To create this structure, the research team needed to produce large amounts of the ZnT8 protein, and they did so by inserting a short sequence of DNA, called a plasmid, encoding the gene for ZnT8 into a protein production host derived from human embryonic kidney cells in the laboratory. The researchers then isolated the protein from the cells and inserted it into the membrane.

The researchers then tested the efficacy of the structure for detecting the autoimmune antibodies that recognize ZnT8 on a highly sensitive assay, known as a nanostructured, plasmonic near-infrared fluorescence enhancing pGOLD platform developed by a group led by Hongjie Dai, Ph.D., at Stanford University. The group evaluated 307 human blood samples using this test, 138 from type 1 diabetes patients and 169 from healthy individuals. The test correctly identified 76 percent of the samples from type 1 diabetes patients and accurately identified 97 percent of patients without the disease, making it one of the best assays for ZnT8 autoantibodies to date. "The pGOLD-based assay demonstrates superior sensitivity and high-throughput ability with a much lower sample requirement compared to the existing clinical tests," says Hao Wan, Ph.D., postdoctoral fellow at Stanford University and first author of the paper.

The reason for the test's success is the structure and orientation of the protein. "Unlike other tests where ZnT8 is used only in part, the use of the lipid membrane to hold the protein in the assay allowed us to present the protein not only in its natural form, but also to control the orientation of the protein," notes Chengfeng Merriman, Ph.D., research associate at the Johns Hopkins University School of Medicine and first author of the paper. This structure allowed researchers to expose all sides of the protein to autoimmune antibodies in patients' blood. This maximized the sites at which the antibodies can connect with the protein and if present, indicate a positive result for type 1 diabetes.

Fu hopes the new technology will ultimately be combined with current tests to reach the critical 99 percent accuracy to begin implementing type 1 diabetes tests across the entire population. However, further research is required to improve the design before it becomes clinically available.

According to the National Institutes of Health (NIH), there are approximately 29.1 million people living with diabetes and about 18,000 children in the U.S. are diagnosed with type 1 diabetes, with diagnoses peaking around the age of 14. The disease is controllable with insulin injections, pumps and constant blood sugar testing.

However, according to the NIH, rates of type 1 diabetes diagnosis in children are increasing by 1.8 percent each year. The technology developed by this study could someday help clinicians catch the disorder earlier in life before symptoms such as sudden weight loss, extreme hunger, blurred vision and complications such as hyperglycemia, ketoacidosis and nerve damage occur.

-end-

To listen and download the interview with Dr. Dax Fu please click here.

Other researchers involved in this study include Mark Atkinson and Kieran M. McGrail of the University of Florida and Yongye Liang of the South University of Science and Technology of China.

This study was supported by the National Heart, Lung and Blood Institute (R01 HL127113-01A1), the National Institute of General Medical Sciences (5R01GM065137) and the Calbrain program.

Johns Hopkins Medicine

Related Diabetes Articles:

The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
New cause of diabetes
Although insulin-producing cells are found in the endocrine tissue of the pancreas, a new mouse study suggests that abnormalities in the exocrine tissue could cause cell non-autonomous effects that promotes diabetes-like symptoms.
The Lancet Diabetes & Endocrinology: Reducing sugar content in sugar-sweetened drinks by 40 percent over 5 years could prevent 1.5 million cases of overweight and obesity in the UK and 300,000 cases of diabetes
A new study published in The Lancet Diabetes & Endocrinology journal suggests that reducing sugar content in sugar sweetened drinks (including fruit juices) in the UK by 40 percent over five years, without replacing them with any artificial sweeteners, could prevent 500,000 cases of overweight and 1 million cases of obesity, in turn preventing around 300,000 cases of type 2 diabetes, over two decades.
Breastfeeding lowers risk of type 2 diabetes following gestational diabetes
Women with gestational diabetes who consistently and continuously breastfeed from the time of giving birth are half as likely to develop type 2 diabetes within two years after delivery, according to a study from Kaiser Permanente published today in Annals of Internal Medicine.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.