Nav: Home

Is the Earth warming? The ocean gives you the answer

September 13, 2017

Humans have released carbon dioxide and other greenhouse gases, and the result is an accumulation of heat in the Earth's climate system, commonly referred to as "global warming". "How fast is the Earth's warming?" is a key question for decision makers, scientists and general public.

Previously, the global mean surface temperature has been widely used as a key metric of global warming. However, a new study published in AGU's Eos proposed a better way of measuring global warming: monitoring ocean heat content change and sea level rise. The authors come from a variety of international communities including China (Institute of Atmospheric Physics, Chinese Academy of Sciences), U.S.A. (NCAR, NOAA, and University of St. Thomas) and France (Mercator Ocean).

To determine how fast the Earth is accumulating heat, scientists focus on the Earth's energy imbalance (EEI): the difference between incoming solar radiation and outgoing longwave (thermal) radiation. Increases in the EEI are directly attributable to human activities that increase carbon dioxide and other greenhouse gases in the atmosphere. Extra heat trapped by increasing greenhouse gases mainly ends up in the oceans (more than 90% is stored there). Hence, to measure global warming, we have to measure ocean warming!

On the other hand, the amplitude of the global warming signal compared with natural variability (noise) defines how well a metric tracks global warming. This study shows that the temporal evolution of ocean heat content has relatively high signal-to-noise ratio; therefore, it requires 3.9 years to separate the global warming trend from natural variability. Similarly, for sea level rise, 4.6 years are sufficient to detect the climate change signal. By contrast, owing to weather, El Niño - Southern Oscillation and other natural variability embedded in the global mean surface temperature record, scientists need at least 27 years of data to detect a robust trend. An excellent example is the 1998-2013 period, when energy was redistributed within the Earth's system and the rise of global mean surface temperature slowed - sometimes call a "hiatus".

This study suggests that changes in ocean heat content, the dominant component of Earth's energy imbalance, should be a fundamental metric along with sea level rise. Based on the recent improvements of ocean monitoring technologies, especially after 2005 through autonomous floats called Argo, and advanced methodologies to reconstruct the historical ocean temperature record, scientists have been able to quantify ocean heat content changes back to 1960, even though there is a much sparser historical instrument record prior to 2005. Sea level rise is best known since 1993 when altimeters were first launched on satellites to enable sea level change observations to millimeter accuracy.

According to the most up-to-date estimates, the top-10 warmest years of the ocean (indicated by OHC change at upper 2000m) are all in the most recent decade after 2006, with 2015-2016 the warmest period among the past 77 years. The heat storage in the ocean amounts to an increase of 30.4×1022 Joules (J) since 1960, equal to a heating rate of 0.33 Watts per square meter (W m-2) averaged over the entire Earth's surface-- and 0.61 W m-2 after 1992. For comparison, the increase in ocean heat content observed since 1992 in the upper 2000 meters is about 2000 times the total net generation of electricity by U.S. utility companies in 2015.

It is evident that scientists and modelers who seek global warming signals should track how much heat the ocean has stored at any given time, i.e. ocean heat content, as well as sea level rise. Locally, in the deep tropics, ocean heat content directly relates to hurricane activity. Ocean heat content is a vital sign of our planet and informs societal decisions about adaptation to and mitigation of climate change.


Institute of Atmospheric Physics, Chinese Academy of Sciences

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?  Through newly unearthed archival tape, we hear Sipple himself grapple with some of the most vexing topics of his day and ours - privacy, identity, the freedom of the press - not to mention the bonds of family and friendship.  Reported by Latif Nasser and Tracie Hunte. Produced by Matt Kielty, Annie McEwen, Latif Nasser and Tracie Hunte. Special thanks to Jerry Pritikin, Michael Yamashita, Stan Smith, Duffy Jennings; Ann Dolan, Megan Filly and Ginale Harris at the Superior Court of San Francisco; Leah Gracik, Karyn Hunt, Jesse Hamlin, The San Francisco Bay Area Television Archive, Mike Amico, Jennifer Vanasco and Joey Plaster. Support Radiolab today at
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.