Nav: Home

A popular bottle-breaking trick is giving insight to brain injuries

September 13, 2017

As many YouTube videos show, striking the top of a liquid-filled bottle can shatter the bottom. Now researchers are hoping to use new knowledge of that party trick to help fill a gap in something much more serious: brain research.

A study by engineering professors from Brigham Young University, Utah State University and the Tokyo University of Agriculture and Technology details exactly what happens when a liquid at rest -- like the water in a bottle -- is suddenly put into motion. Using high-speed photography, the team shows how the swift acceleration causes small bubbles to form in the liquid and then rapidly collapse, releasing a destructive shockwave.

The proper term for the phenomenon is called cavitation, a process well known to engineers for causing damage in pipes and marine propellers. The new study, published in the Proceedings of the National Academy of Sciences, details an alternative formula that more accurately predicts when cavitation will happen.

While the finding has immediate implications for many industrial processes interrupted by cavitation-induced damage, there's also growing evidence linking cavitation to brain trauma.

"The brain is surrounded by fluid, and when you have impact, it's possible you are experiencing cavitation within that fluid," said study co-author Scott Thomson, associate professor of mechanical engineering at BYU.

Fluid dynamics experts know how to predict when cavitation will occur in a fluid already in motion, but their formula doesn't work so well when a resting fluid is rapidly accelerated. The new study fixes that problem by finalizing a new equation that considers a fluid's depth and acceleration.

For the brain, knowing this alternative cavitation formula could be used to better predict brain injuries caused by high-velocity impact. "And once we're able to predict when that will happen, we can better design safety devices to help prevent serious brain damage," Thomson said.

Those safety devices could be for athletic applications, such as football helmets, or even military applications.

"If a blast wave is above a certain magnitude, there may not be much we can do to prevent brain injury for a soldier," said study author Tadd Truscott, associate professor of mechanical engineering at Utah State University. "But maybe a helmet can be developed to detect when that trauma has happened so a soldier can be removed from the front line and be saved from repeat exposure to blasts."

-end-

Former BYU Ph.D. student Zhao Pan, now in the Department of Mechanical and Aerospace Engineering at Utah State University, was lead author on the study. Co-authors included BYU grad Randy Hurd, now a Ph.D. candidate at Utah State, and BYU grad Jesse Daily, now with the Naval Undersea Warfare Center.

Brigham Young University

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?  Through newly unearthed archival tape, we hear Sipple himself grapple with some of the most vexing topics of his day and ours - privacy, identity, the freedom of the press - not to mention the bonds of family and friendship.  Reported by Latif Nasser and Tracie Hunte. Produced by Matt Kielty, Annie McEwen, Latif Nasser and Tracie Hunte. Special thanks to Jerry Pritikin, Michael Yamashita, Stan Smith, Duffy Jennings; Ann Dolan, Megan Filly and Ginale Harris at the Superior Court of San Francisco; Leah Gracik, Karyn Hunt, Jesse Hamlin, The San Francisco Bay Area Television Archive, Mike Amico, Jennifer Vanasco and Joey Plaster. Support Radiolab today at Radiolab.org/donate.
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.