Nav: Home

South Africa's long-legged bees adapted to pollinate snapdragon flowers

September 13, 2017

New research from Stellenbosch University (SU) in South Africa shows that, in an extraordinary case of adaptation, the disproportionately long front legs of South Africa's oil-collecting Rediviva bee species have evolved in response to the equally long oil-producing spurs of snapdragons.

"This is one of the few examples where a pollinator had to adapt to the flowers that it pollinates, rather than the other way round," explains Prof Anton Pauw, lead author of the article 'Long-legged bees make adaptive leaps: linking adaptation to coevolution in a plant-pollinator network', published in the Proceedings of the Royal Society B: Biology today (13 September 2017).

Prof Pauw, an evolutionary ecologist in the Department of Botany and Zoology at SU, says pollinators often hold the key to understanding the genesis of floral diversity. In other words, the flowers of plants have adapted to their pollinators in spectacular ways in order to be able to reproduce.

In this case, however, the little-known Rediviva bee species have developed front legs of varying lengths - from 6.9 to 23.4 mm long - in order to reach the oil produced deep at the back of the snapdragon's twin spurs. The length of these spurs also vary from species to species, with 70 species in the largest genus of oil-producing flowers (Diascia).

The bees' front legs are coated in a dense pile of velvety hairs that soak up the oil, which is then mixed with pollen to form a super-nutritious bread for the larvae in their underground nests. The oil is also used to line the walls of these underground nests.

Working in collaboration with researchers from Germany, the United Kingdom, Belgium and the United States of America, Pauw used DNA analysis to produce a family tree for 19 of the 26 Rediviva species: "We were able to show that very closely related bee species often differ dramatically in leg length and that this divergence could be explained by differences in the spur length of the flowers that they visit."

Documenting the network of interactions between the oil-collecting bees and the 96 plant species from which they gather oil, required many years of observation. Many of the oil-secreting plants flower only the first year after a fire.

Prof Pauw says the next step would be to do a phylogenetic analysis of snapdragons (Diascia), to test whether flower spur length and bee leg length evolved simultaneously as one would expect if bees and plants were coevolving: "In this scenario, plants and bees evolve together in a sort of evolutionary dance."

He says it is important, from an ecological perspective, to understand these interactions: "Oil-collecting bees are threatened by man's activities, in particular by urbanization. By understanding their role in generating and maintaining plant diversity, it might be possible to predict and ameliorate human impacts".

-end-

Co-authors on the article are Belinda Kahnt, Michael Kuhlmann, Denis Michez, Graham A. Montgomery, Elizabeth Murray and Bryan N. Danforth.

Stellenbosch University

Related Bees Articles:

To buzz or to scrabble? To foraging bees, that's the question
A team of UA biologists has discovered that for a hard-working bumblebee, foraging for pollen versus nectar is very different -- and tougher than you might think.
Nicotine enhances bees' activity
Nicotine-laced nectar can speed up a bumblebee's ability to learn flower colors, according to scientists at Queen Mary University of London (QMUL).
Scientists say agriculture is good for honey bees
Scientists with the University of Tennessee Institute of Agriculture evaluated the impacts of row-crop agriculture, including the traditional use of pesticides, on honey bee health.
Honey bees have sharper eyesight than we thought
Research conducted at the University of Adelaide has discovered that bees have much better vision than was previously known, offering new insights into the lives of honey bees, and new opportunities for translating this knowledge into fields such as robot vision.
Overuse of antibiotics brings risks for bees -- and for us
Researchers from The University of Texas at Austin have found that honeybees treated with a common antibiotic were half as likely to survive the week after treatment compared with a group of untreated bees, a finding that may have health implications for bees and people alike.
Flies and bees act like plant cultivators
Pollinator insects accelerate plant evolution, but a plant changes in different ways depending on the pollinator.
Bees can learn to use a tool by observing others
Simply by watching other bees, bumblebees can learn to use a novel tool to obtain a reward, a new study reveals.
Stingless bees have their nests protected by soldiers
Attacks by robber bees result in the evolution of larger guard bees and thus promote the division of labor in the hive.
Save the bees? There's an app for that
A new mobile app can calculate the crop productivity and pollination benefits of supporting endangered bees.
Sweat bees on hot chillies: Native bees thrive in traditional farming, securing good yield
Farming doesn't always have to be harmful to bees: Even though farmers on the Mexican peninsula of Yucatan traditionally slash-and-burn forest to create small fields, this practice can be beneficial to sweat bees by creating attractive habitats.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.