Nav: Home

Supported liquid metal catalysts -- a new generation of reaction accelerators

September 13, 2017

Catalysts are agents that initiate chemical reactions, speed them up or significantly increase the yield of the desired product. New and improved catalysts are thus considered the key to creating more sustainable and efficient production processes in the chemical industry. In a joint research project, five professors at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and their teams have recently discovered how to bypass the known drawbacks of the technical catalysts that are currently in use by means of a new material concept that makes the creation of significantly more efficient catalysts possible.

This new generation of catalysts employs liquid drops of metal alloy attached to porous carriers that are brought into contact with the gaseous reactants. The microscopically small drops of alloy are fluid because they contain a high proportion of gallium, an element with a very low melting point. At the same time, this high concentration of gallium ensures that the atoms of the dissolved secondary metal components are thoroughly dispersed: the individual metal atoms in solution within the gallium are responsible for the catalytic effect. The researchers have published their findings in the leading specialist journal Nature Chemistry (DOI: 10.1038/NCHEM.2822).

Supported liquid catalysts

Over the past decade, researchers at FAU have repeatedly been able to demonstrate their international preeminence in the field of catalyst material innovations. Catalytic Materials is consequently a key research area within the Cluster of Excellence Engineering of Advanced Materials (EAM) at FAU. Supported liquid catalysts have often been the focal point of interest for the FAU-based researchers. These combine the benefits of customised molecular reaction accelerators with the advantage that they can be more readily separated from the product. In the concept outlined in the article published in Nature Chemistry, the use of metal alloys in supported liquid catalysts is described for the first time. In addition, it is also the first time that catalytic activity has been ascribed to liquid metal alloys.

Moreover, the initially tested material combinations have been found to significantly outperform standard technical catalysts that have taken years to develop. 'It is particularly interesting that there is little to no deactivation of the supported metal complexes when carbon deposits form on them,' says Professor Peter Wasserscheid. 'It is deposits such as this that are the main cause of the deactivation of catalysts used for catalytic conversion at high temperatures by the petrochemical industry.' The researchers were able to demonstrate this important effect in the case of the dehydration of butane. The special structural nature of this new class of materials was discovered by four groups working in collaboration: microscopic analysis was undertaken by the team under Wolfgang Peuker, the teams of Hans-Peter Steinrück and Christian Papp completed the spectrographic analysis, Rainer Hock's team was responsible for radiographic analysis while the corresponding calculations were undertaken by Andreas Görling and his colleagues.

Gallium: the secret of success

The element gallium plays a central role in this new class of materials. Gallium melts at around 30°C and has a boiling point of 2400°C. It possesses the unique ability of being able to dissolve almost all other metals. When it is exposed to air, ultra-thin layers of oxide form on the surface of gallium; however, these are reconverted back to the original element under the conditions obtained during many catalytic processes. To date, the FAU-based researchers have achieved their spectacular results using palladium dissolved in gallium. They next intend to conduct further research to find out whether these extraordinary effects can also be obtained using non-precious metals dissolved in gallium and also whether the effects can be reproduced in connection with other chemical reactions. 'Our calculations lead us to assume that single metal atoms dissolved in gallium can display totally different reactive characteristics from those that the same metal in crystalline form will usually exhibit,' explains Andreas Görling. 'This is why we are so fascinated by this new class of catalytic materials. We are convinced that with the help of supported alloy complexes, highly efficient and very cost-effective catalysts can be developed that have considerable potential with regard to industrial applications,' adds Hans-Peter Steinrück.
The Cluster of Excellence EAM

The Cluster of Excellence EAM has been active in the research and development of new materials since 2007. The cluster which has 200 staff working across nine disciplines, will have received almost €73 million in funding to the end of 2017. EAM has achieved major advances in the development of new high-performance materials in the fields of catalysis, lightweight construction, nano-electronics, optics and photonics.

University of Erlangen-Nuremberg

Related Chemical Reactions Articles:

Caught on camera -- chemical reactions 'filmed' at the single-molecule level
Scientists have succeeded in 'filming' inter-molecular chemical reactions -- using the electron beam of a transmission electron microscope as a stop-frame imaging tool.
Study: Some catalysts contribute their own oxygen for reactions
New MIT research shows that metal-oxide catalysts can sometimes release oxygen from within their structure, enhancing chemical activity.
Chemists uncover a means to control catalytic reactions
Scientists at the University of Toronto have found a way to make catalysis more selective, breaking one chemical bond 100 times faster than another.
Deep insights from surface reactions
Using the Stampede supercomputer at the Texas Advanced Computing Center, researchers have developed biosensors that can speed up drug development, designed improved materials for desalinization, and explored new ways of generating energy from bacteria.
Scientists trace 'poisoning' in chemical reactions to the atomic scale
A combination of experiments, including X-ray studies at Berkeley Lab, revealed new details about pesky deposits that can stop chemical reactions vital to fuel production and other processes.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
Scientists rev up speed of bionic enzyme reactions
Bionic enzymes got a needed boost in speed thanks to new research at the Berkeley Lab.
Adverse drug reactions may be under-reported in young children
A new study reveals that adverse drug reactions in newborns and infants may be under-reported.
New model predicts once-mysterious chemical reactions
A team of researchers from Los Alamos National Laboratory and Curtin University in Australia developed a theoretical model to forecast the fundamental chemical reactions involving molecular hydrogen.
Syracuse University chemists add color to chemical reactions
Members of the Maye Research Group at Syracuse University have designed a nanomaterial that changes color when it interacts with ions and other small molecules during a chemical reaction.

Related Chemical Reactions Reading:

Chemical Reactions (Science Readers: Content and Literacy)
by Teacher Created Materials;Jenna Winterberg (Author)

Dynamite is highly explosive. This is because it’s a chemical reaction waiting to happen. Chemical reactions happens all the time - even inside us! Reactants change to make new products. Explore physical and chemical properties of the substances that surround us in this explosive physical science book. From decomposition to acid-base reactions, fifth-grade readers will learn about six types of chemical reactions; activation energy and hopping electrons; reactivity, catalysts, and inhibitors; physical changes of mixtures; and more through this high-interest informational text filled with... View Details

Reactions: An Illustrated Exploration of Elements, Molecules, and Change in the Universe
by Theodore Gray (Author)

The long-awaited third installment in Theodore Gray's iconic "Elements" trilogy. The first two titles, Elements and Molecules, have sold more than 1.5 million copies worldwide.

With Reactions bestselling author Theodore Gray continues the journey through our molecular and chemical world that began with the tour de force The Elements and continued with Molecules. In The Elements, Gray gave us a never-before-seen, mesmerizing photographic view of the 118 elements in the periodic table. In Molecules, with the same phenomenal... View Details

Incredible Experiments with Chemical Reactions & Mixtures (Magic Science)
by Paula Navarro (Author), Angels Jimenez (Author), Bernadette Cuxart (Illustrator)

Fascinating scientific concepts are simplified and explored in ways that kids will enjoy in the Magic Science series. Each book presents 16 simple experiments that can be performed with common objects found around the house. Incredible Experiments with Chemical Reactions & Mixtures explores concepts like water density, oxidation, and more are explored using simple household materials. Each experiment includes illustrated, step-by-step instructions and a simple scientific explanation of what is happening during the experiment. Full-color illustrations on each page. View Details

Why Chemical Reactions Happen
by James Keeler (Author), Peter Wothers (Author)

By tackling the most central ideas in chemistry, Why Chemical Reactions Happen provides the reader with all the tools and concepts needed to think like a chemist. The text takes a unified approach to the subject, aiming to help the reader develop a real overview of chemical processes, by avoiding the traditional divisions of physical, inorganic and organic chemistry.

To understand how chemical reactions happen we need to know about the bonding in molecules, how molecules interact, what determines whether an interaction is favorable or not, and what the outcome will be.... View Details

Chemical Kinetics and Reaction Dynamics (Dover Books on Chemistry)
by Paul L. Houston (Author), Chemistry (Author)

This text teaches the principles underlying modern chemical kinetics in a clear, direct fashion, using several examples to enhance basic understanding. It features solutions to selected problems, with separate sections and appendices that cover more technical applications.
Each chapter is self-contained and features an introduction that identifies its basic goals, their significance, and a general plan for their achievement. This text's important aims are to demonstrate that the basic kinetic principles are essential to the solution of modern chemical problems, and to show how the... View Details

Elements of Chemical Reaction Engineering (5th Edition) (Prentice Hall International Series in the Physical and Chemical Engineering Sciences)
by H. Scott Fogler (Author)

The Definitive, Fully Updated Guide to Solving Real-World Chemical Reaction Engineering Problems


For decades, H. Scott Fogler’s Elements of Chemical Reaction Engineering has been the world’s dominant text for courses in chemical reaction engineering. Now, Fogler has created a new, completely updated fifth edition of his internationally respected book. The result is a refined book that contains new examples and problems, as well as an updated companion Web site. More than... View Details

Chemical Reactions (Sci-Hi: Physical Science)
by Eve Hartman (Author), Wendy Meshbesher (Author)

How does dough turn into bread? What kinds of reactions give off heat? What’s the harm in burning fossil fuels? The visually stimulating 'Sci-Hi' books take learning science core curriculum to a whole new exciting level. Each title explores an area of life, physical, or earth science in a way that is both engaging and comprehensive. View Details

Elements of Chemical Reaction Engineering (4th Edition)
by H. Scott Fogler (Author)

The Definitive, Fully Updated Guide to Solving Real-World Chemical Reaction Engineering Problems

The fourth edition of Elements of Chemical Reaction Engineering is a completely revised version of the worldwide best-selling book. It combines authoritative coverage of the principles of chemical reaction engineering with an unsurpassed focus on critical thinking and creative problem solving, employing open-ended questions and stressing the Socratic method. Clear and superbly organized, it integrates text, visuals, and computer simulations to help readers solve even... View Details

Chemical Reaction Engineering, 3rd Edition
by Octave Levenspiel (Author)

Chemical reaction engineering is concerned with the exploitation of chemical reactions on a commercial scale. It's goal is the successful design and operation of chemical reactors. This text emphasizes qualitative arguments, simple design methods, graphical procedures, and frequent comparison of capabilities of the major reactor types. Simple ideas are treated first, and are then extended to the more complex. View Details

Chemical Reactions: Teacher's Guide : Grades 6-8 (Great Explorations in Math & Science)
by Jacqueline Barber (Author)

Chemicals in a zip-lock bag bubble; change color; and produce gas, heat and an odor. Students observe changes and design experiments to explain their observations. They pursue their own experimental plans in an exciting, fun and safe situation. The first part of the activity emphasizes the process of observation; the second part involves experimenting and making inferences. Summary outlines help you guide students through these activities in an organized manner. Removable copies of student data sheets are included. View Details

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Simple Solutions
Sometimes, the best solutions to complex problems are simple. But simple doesn't always mean easy. This hour, TED speakers describe the innovation and hard work that goes into achieving simplicity. Guests include designer Mileha Soneji, chef Sam Kass, sleep researcher Wendy Troxel, public health advocate Myriam Sidibe, and engineer Amos Winter.
Now Playing: Science for the People

#448 Pavlov (Rebroadcast)
This week, we're learning about the life and work of a groundbreaking physiologist whose work on learning and instinct is familiar worldwide, and almost universally misunderstood. We'll spend the hour with Daniel Todes, Ph.D, Professor of History of Medicine at The Johns Hopkins University, discussing his book "Ivan Pavlov: A Russian Life in Science."