Nav: Home

Supported liquid metal catalysts -- a new generation of reaction accelerators

September 13, 2017

Catalysts are agents that initiate chemical reactions, speed them up or significantly increase the yield of the desired product. New and improved catalysts are thus considered the key to creating more sustainable and efficient production processes in the chemical industry. In a joint research project, five professors at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and their teams have recently discovered how to bypass the known drawbacks of the technical catalysts that are currently in use by means of a new material concept that makes the creation of significantly more efficient catalysts possible.

This new generation of catalysts employs liquid drops of metal alloy attached to porous carriers that are brought into contact with the gaseous reactants. The microscopically small drops of alloy are fluid because they contain a high proportion of gallium, an element with a very low melting point. At the same time, this high concentration of gallium ensures that the atoms of the dissolved secondary metal components are thoroughly dispersed: the individual metal atoms in solution within the gallium are responsible for the catalytic effect. The researchers have published their findings in the leading specialist journal Nature Chemistry (DOI: 10.1038/NCHEM.2822).

Supported liquid catalysts

Over the past decade, researchers at FAU have repeatedly been able to demonstrate their international preeminence in the field of catalyst material innovations. Catalytic Materials is consequently a key research area within the Cluster of Excellence Engineering of Advanced Materials (EAM) at FAU. Supported liquid catalysts have often been the focal point of interest for the FAU-based researchers. These combine the benefits of customised molecular reaction accelerators with the advantage that they can be more readily separated from the product. In the concept outlined in the article published in Nature Chemistry, the use of metal alloys in supported liquid catalysts is described for the first time. In addition, it is also the first time that catalytic activity has been ascribed to liquid metal alloys.

Moreover, the initially tested material combinations have been found to significantly outperform standard technical catalysts that have taken years to develop. 'It is particularly interesting that there is little to no deactivation of the supported metal complexes when carbon deposits form on them,' says Professor Peter Wasserscheid. 'It is deposits such as this that are the main cause of the deactivation of catalysts used for catalytic conversion at high temperatures by the petrochemical industry.' The researchers were able to demonstrate this important effect in the case of the dehydration of butane. The special structural nature of this new class of materials was discovered by four groups working in collaboration: microscopic analysis was undertaken by the team under Wolfgang Peuker, the teams of Hans-Peter Steinrück and Christian Papp completed the spectrographic analysis, Rainer Hock's team was responsible for radiographic analysis while the corresponding calculations were undertaken by Andreas Görling and his colleagues.

Gallium: the secret of success

The element gallium plays a central role in this new class of materials. Gallium melts at around 30°C and has a boiling point of 2400°C. It possesses the unique ability of being able to dissolve almost all other metals. When it is exposed to air, ultra-thin layers of oxide form on the surface of gallium; however, these are reconverted back to the original element under the conditions obtained during many catalytic processes. To date, the FAU-based researchers have achieved their spectacular results using palladium dissolved in gallium. They next intend to conduct further research to find out whether these extraordinary effects can also be obtained using non-precious metals dissolved in gallium and also whether the effects can be reproduced in connection with other chemical reactions. 'Our calculations lead us to assume that single metal atoms dissolved in gallium can display totally different reactive characteristics from those that the same metal in crystalline form will usually exhibit,' explains Andreas Görling. 'This is why we are so fascinated by this new class of catalytic materials. We are convinced that with the help of supported alloy complexes, highly efficient and very cost-effective catalysts can be developed that have considerable potential with regard to industrial applications,' adds Hans-Peter Steinrück.
-end-
The Cluster of Excellence EAM

The Cluster of Excellence EAM has been active in the research and development of new materials since 2007. The cluster which has 200 staff working across nine disciplines, will have received almost €73 million in funding to the end of 2017. EAM has achieved major advances in the development of new high-performance materials in the fields of catalysis, lightweight construction, nano-electronics, optics and photonics.

University of Erlangen-Nuremberg

Related Chemical Reactions Articles:

Caught on camera -- chemical reactions 'filmed' at the single-molecule level
Scientists have succeeded in 'filming' inter-molecular chemical reactions -- using the electron beam of a transmission electron microscope as a stop-frame imaging tool.
Study: Some catalysts contribute their own oxygen for reactions
New MIT research shows that metal-oxide catalysts can sometimes release oxygen from within their structure, enhancing chemical activity.
Chemists uncover a means to control catalytic reactions
Scientists at the University of Toronto have found a way to make catalysis more selective, breaking one chemical bond 100 times faster than another.
Deep insights from surface reactions
Using the Stampede supercomputer at the Texas Advanced Computing Center, researchers have developed biosensors that can speed up drug development, designed improved materials for desalinization, and explored new ways of generating energy from bacteria.
Scientists trace 'poisoning' in chemical reactions to the atomic scale
A combination of experiments, including X-ray studies at Berkeley Lab, revealed new details about pesky deposits that can stop chemical reactions vital to fuel production and other processes.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
Scientists rev up speed of bionic enzyme reactions
Bionic enzymes got a needed boost in speed thanks to new research at the Berkeley Lab.
Adverse drug reactions may be under-reported in young children
A new study reveals that adverse drug reactions in newborns and infants may be under-reported.
New model predicts once-mysterious chemical reactions
A team of researchers from Los Alamos National Laboratory and Curtin University in Australia developed a theoretical model to forecast the fundamental chemical reactions involving molecular hydrogen.
Syracuse University chemists add color to chemical reactions
Members of the Maye Research Group at Syracuse University have designed a nanomaterial that changes color when it interacts with ions and other small molecules during a chemical reaction.

Related Chemical Reactions Reading:

Reactions: An Illustrated Exploration of Elements, Molecules, and Change in the Universe
by Theodore Gray (Author)

The long-awaited third installment in Theodore Gray's iconic "Elements" trilogy. The first two titles, Elements and Molecules, have sold more than 1.5 million copies worldwide.

With Reactions bestselling author Theodore Gray continues the journey through our molecular and chemical world that began with the tour de force The Elements and continued with Molecules. In The Elements, Gray gave us a never-before-seen, mesmerizing photographic view of the 118 elements in the periodic table. In Molecules, with the same phenomenal... View Details


Elements of Chemical Reaction Engineering (5th Edition) (Prentice Hall International Series in the Physical and Chemical Engineering Sciences)
by H. Scott Fogler (Author)

The Definitive, Fully Updated Guide to Solving Real-World Chemical Reaction Engineering Problems

 

For decades, H. Scott Fogler’s Elements of Chemical Reaction Engineering has been the world’s dominant text for courses in chemical reaction engineering. Now, Fogler has created a new, completely updated fifth edition of his internationally respected book. The result is a refined book that contains new examples and problems, as well as an updated companion Web site. More than ever,... View Details


Chemical Reactions (Science Readers: Content and Literacy)
by Teacher Created Materials;Jenna Winterberg (Author)

Dynamite is highly explosive. This is because it’s a chemical reaction waiting to happen. Chemical reactions happens all the time - even inside us! Reactants change to make new products. Explore physical and chemical properties of the substances that surround us in this explosive physical science book. From decomposition to acid-base reactions, fifth-grade readers will learn about six types of chemical reactions; activation energy and hopping electrons; reactivity, catalysts, and inhibitors; physical changes of mixtures; and more through this high-interest informational text filled with... View Details


Essentials of Chemical Reaction Engineering (2nd Edition) (Prentice Hall International Series in the Physical and Chemical Engineering Sciences)
by H. Scott Fogler (Author)

Today’s Definitive, Undergraduate-Level Introduction to Chemical Reaction Engineering Problem-Solving

 

For 30 years, H. Scott Fogler’s Elements of Chemical Reaction Engineering has been the #1 selling text for courses in chemical reaction engineering worldwide. Now, in Essentials of Chemical Reaction Engineering, Second Edition, Fogler has distilled this classic into a modern, introductory-level guide specifically for undergraduates. This is the ideal resource for today’s... View Details


Essentials of Chemical Reaction Engineering (Prentice Hall International Series in the Physical and Chemical Engineering Sciences)
by H. Scott Fogler (Author)

Learn Chemical Reaction Engineering through Reasoning, Not Memorization

 

Essentials of Chemical Reaction Engineering is the complete, modern introduction to chemical reaction engineering for today’s undergraduate students. Starting from the strengths of his classic Elements of Chemical Reaction Engineering, Fourth Edition, in this volume H. Scott Fogler added new material and distilled the essentials for undergraduate students.

 

... View Details


Chemical Reaction Engineering, 3rd Edition
by Octave Levenspiel (Author)

Chemical reaction engineering is concerned with the exploitation of chemical reactions on a commercial scale. It's goal is the successful design and operation of chemical reactors. This text emphasizes qualitative arguments, simple design methods, graphical procedures, and frequent comparison of capabilities of the major reactor types. Simple ideas are treated first, and are then extended to the more complex. View Details


Fundamentals of Chemical Reaction Engineering (Dover Civil and Mechanical Engineering)
by Mark E. Davis PhDC (Author), Robert J. Davis (Author), Engineering (Author)

Appropriate for a one-semester undergraduate or first-year graduate course, this text introduces the quantitative treatment of chemical reaction engineering. It covers both homogeneous and heterogeneous reacting systems and examines chemical reaction engineering as well as chemical reactor engineering. The authors take a chemical approach, helping students develop an intuitive feeling for concepts, rather than an engineering approach, which tends to overlook the inner workings of systems and objects.
Each chapter contains numerous worked-out problems and real-world vignettes... View Details


Chemical Kinetics and Reaction Dynamics (Dover Books on Chemistry)
by Paul L. Houston (Author), Chemistry (Author)

This text teaches the principles underlying modern chemical kinetics in a clear, direct fashion, using several examples to enhance basic understanding. It features solutions to selected problems, with separate sections and appendices that cover more technical applications.
Each chapter is self-contained and features an introduction that identifies its basic goals, their significance, and a general plan for their achievement. This text's important aims are to demonstrate that the basic kinetic principles are essential to the solution of modern chemical problems, and to show how the... View Details


Elements of Chemical Reaction Engineering, 3rd Edition (Prentice Hall International Series in the Physical and Chemical Engineering Sciences)
by H. Scott Fogler (Author)

A text/CD-ROM combining user-friendly software and classic algorithms, emphasizing problem solving through reason rather than memorization. A structured approach helps develop skills in critical thinking, creative thinking, and problem solving, by employing open-ended questions and stressing the Socratic method. Includes background appendices and chapter problems. The companion CD-ROM includes lecture notes, problem solving software, derivations and other reference material, and homework problems. Margin icons in the text link concepts and procedures to material on the CD-ROM. Annotation c.... View Details


Elements of Chemical Reaction Engineering (4th Edition)
by H. Scott Fogler (Author)

The Definitive, Fully Updated Guide to Solving Real-World Chemical Reaction Engineering Problems

The fourth edition of Elements of Chemical Reaction Engineering is a completely revised version of the worldwide best-selling book. It combines authoritative coverage of the principles of chemical reaction engineering with an unsurpassed focus on critical thinking and creative problem solving, employing open-ended questions and stressing the Socratic method. Clear and superbly organized, it integrates text, visuals, and computer simulations to help readers solve even... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Big Five
What are the five biggest global challenges we face right now — and what can we do about them? This hour, TED speakers explore some radical solutions to these enduring problems. Guests include geoengineer Tim Kruger, president of the International Rescue Committee David Miliband, political scientist Ian Bremmer, global data analyst Sarah Menker, and historian Rutger Bregman.
Now Playing: Science for the People

#457 Trowel Blazing
This week we look at some of the lesser known historical figures and current public perception of anthropology, archaeology, and other fields that end in "ology". Rebecca Wragg Sykes, an archaeologist, writer, and co-founder of the TrowelBlazers, tells us about the Raising Horizons project and how their team is trying to shine the spotlight on the forgotten historical women of archaeological, geological, and palaeontological science. And Kristina Killgrove, assistant professor of anthropology at the University of West Florida and science writer, talks about the public perception of the fields of anthropology and archeology, and how those science are represented -...