Nav: Home

New software turns mobile-phone accessory into breathing monitor

September 13, 2017

WASHINGTON -- Researchers have developed new software that makes it possible to use low-cost, thermal cameras attached to mobile phones to track how fast a person is breathing. This type of mobile thermal imaging could be used for monitoring breathing problems in elderly people living alone, people suspected of having sleep apnea or babies at risk for sudden infant death syndrome (SIDS).

In The Optical Society (OSA) journal Biomedical Optics Express, the researchers report that their new software combined with a low-cost thermal camera performed well when analyzing breathing rate during tests simulating real-world movement and temperature changes.

"As thermal cameras continue to get smaller and less expensive, we expect that phones, computers and augmented reality devices will one day incorporate thermal cameras that can be used for various applications," said Nadia Bianchi-Berthouze from University College London, (UK) and leader of the research team. "By using low-cost thermal cameras, our work is a first step toward bringing thermal imaging into people's everyday lives. This approach can be used in places other sensors might not work or would cause concern."

In addition to detecting breathing problems, the new approach could one day allow the camera on your computer to detect subtle breathing irregularities associated with pain or stress and then send prompts that help you relax and regulate breathing. Although traditional video cameras can be used to track breathing, they don't work well in low-light situations and can cause privacy concerns when used for monitoring in nursing homes, for example.

"Thermal cameras can detect breathing at night and during the day without requiring the person to wear any type of sensor," said Youngjun Cho, first author of the paper. "Compared to a traditional video camera, a thermal camera is more private because it is more difficult to identify the person."

Personal thermal cameras

Thermal cameras, which use infrared wavelengths to reveal the temperature of an object or scene, have been used in a variety of monitoring applications for some time. Recently, their price and size have dropped enough to make them practical for personal use, with small thermal cameras that connect to mobile phones now available for around $200.

"Large, expensive thermal imaging systems have been used to measure breathing by monitoring temperature changes inside the nostrils under controlled settings," said Cho. "We wanted to use the new portable systems to do the same thing by creating a smart-phone based respiratory tracking method that could be used in almost any environment or activity. However, we found that in real-world situations this type of mobile thermal imaging was affected by changes in air temperature and body movement."

To solve these problems, the researchers developed algorithms that can be used with any thermal camera to compensate for ambient temperature changes and accurately track the nostrils while the person is moving. In addition, the new algorithms improve the way breathing signals are processed. Instead of averaging the temperature readings from 2D pixels around the nostrils, as has been done in the past, Cho developed a way to treat the area as a 3D surface to create a more refined measurement of temperature in the nostrils.

Testing in real-world situations

In addition to indoor laboratory tests, the researchers used the mobile thermal imaging approach to measure the breathing of volunteers in a scenario that involved breathing exercises with changes in ambient temperature and in a fully unconstrained test where volunteers walked around inside and outside of a building. During the walking tests, the thermal camera was placed between 20 and 30 centimeters from a person's face using a rig that attached the camera to a hat. A cord then connected the camera with a mobile phone carried by study volunteers. It is also possible to hold a smartphone with an imaging camera about 50 centimeters from the face to measure breathing.

"For all three types of studies, the algorithms showed significantly better performance in tracking the nostril area than other state-of-the-art methods," said Cho. "In terms of estimating the breathing rate, the tests outside the laboratory showed the best results when compared with the latest algorithms. Although the results were comparable to the traditional breathing belt sensor, for mobile situations our approach seems to be more stable because the belt tends to get loose."

Because the new approach is more stable than standard chest belt respiratory sensors, the method could potentially be used to optimize an athlete's performance by providing more reliable and accurate feedback on breathing patterns during exercise.

The researchers took their work one step further by inferring a person's mental load or stress through automatic breathing analysis. They used their thermal imaging software to track the breathing of people who were free to move around while performing various types of tasks, and the results aligned well with findings from studies that used much more sophisticated equipment, indicating the portable thermal-camera based approach could be a useful tool for apps that help people relax.

"By using mobile thermal imaging to monitor only breathing, we obtained results very comparable to what other studies had found," said Bianchi-Berthouze. "However, those studies used complex, state-of-the-art techniques that involved multiple sensors monitoring not just breathing but also heart rate."

The current version of the software doesn't estimate the breathing rate in real time, but the researchers are working to incorporate this capability and to test their algorithms in more real-life situations.

-end-

Paper: Y. Cho, S. J. Julier, N. Marquardt, N. Bianchi-Berthouze, "Robust tracking of respiratory rate in high-dynamic range scenes using mobile thermal imaging," Biomed. Opt. Express, Volume 8, Issue 10, 4480-4503 (2017). DOI: 10.1364/BOE.8.004480.

About Biomedical Optics Express

Biomedical Optics Express is OSA's principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by The Optical Society and edited by Christoph Hitzenberger, Medical University of Vienna. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts:

Rebecca B. Andersen
The Optical Society
randersen@osa.org
+1 202.416.1443

Joshua Miller
The Optical Society
jmiller@osa.org
+1 202.416.1435

The Optical Society

Related Sleep Apnea Articles:

Sleep apnea and insomnia combination linked with depression
A new study found that men with sleep apnea and insomnia have a higher prevalence and severity of depressive symptoms than men with sleep apnea or insomnia alone.
Anti-nausea drug could help treat sleep apnea
An old pharmaceutical product may be a new treatment for obstructive sleep apnea, according to new research presented today by University of Illinois at Chicago and Northwestern University scientists at the SLEEP 2017 annual meeting in Boston.
Sleep apnea and insomnia in African-Americans goes undiagnosed
African-Americans with sleep apnea and insomnia are rarely diagnosed with either problem, even when the severity of the two sleep disorders are likely to affect their health, according to new research presented at the ATS 2017 International Conference.
Sleep apnea may increase atrial fibrillation risk
Obstructive sleep apnea (OSA) may increase the risk of developing atrial fibrillation (AF), according to new research presented at the ATS 2017 International Conference.
Sleep apnea may increase risk of pregnancy complications
Women with obstructive sleep apnea (OSA) appear to be at greater risk for serious pregnancy complications, longer hospital stays and even admission to the ICU than mothers without the condition, according to a new study of more than 1.5 million pregnancies presented at the ATS 2017 International Conference.
Evidence insufficient regarding screening for obstructive sleep apnea
The US Preventive Services Task Force has concluded that the current evidence is insufficient to assess the balance of benefits and harms of screening for obstructive sleep apnea in asymptomatic adults (including adults with unrecognized symptoms).
Regulating 'gasotransmitters' could improve care for sleep apnea
Unbalanced signaling by two molecules that regulate breathing leads to sleep apnea in mice and rats.
Sleep apnea can contribute to recurring pulmonary embolism
Researchers have found that after the first incidence of pulmonary embolism (PE), obstructive sleep apnea increases the risk for PE recurrence.
Sleep apnea immediately compromises blood pressure
A single bout of sleep apnea impacts the human body's ability to regulate blood pressure.
Sleep apnea may make lung cancer more deadly
A team of researchers from the University of Chicago and the University of Barcelona has found that intermittent hypoxia, or an irregular lack of air experienced by people with sleep apnea, can increase tumor growth by promoting the release of circulating exosomes.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.