Nav: Home

3-D protein structure offers insight into rapid communication by brain cells

September 13, 2017

An intricate new three-dimensional protein structure is providing a detailed look into how brain cells communicate rapidly.

By visualizing how three neural proteins interact with one another, researchers have revealed how they help groups of brain cells release chemical messages at the same time.

The work describes a surprising new cooperation among the three proteins, and could offer insight into other processes where cells secrete molecules, including insulin and airway mucus. Howard Hughes Medical Institute (HHMI) Investigator Axel Brunger and colleagues report the results August 24 in the journal Nature.

When a group of neurons receives an electrical signal, the cells release chemicals called neurotransmitters nearly instantaneously - within less than one thousandth of a second. Neurons hold neurotransmitters in bubble-like structures called synaptic vesicles. These structures rest inside the end of long, thin projections that point toward neighboring cells. To free neurotransmitters from their bubbles, neurons must fuse vesicle membranes with the outer membrane of the projections. This opens the bubbles and dumps their contents into the space between cells. The chemical signals then float to neighboring cells to relay a message.

Scientists knew that three proteins are involved in spitting out neurons' chemical signals. A group of proteins called SNAREs provides energy for membrane fusion. Another protein, called synaptotagmin, releases neurotransmitters when calcium ions appear following an electrical signal. A third protein, complexin, prevents cells from spontaneously releasing neurotransmitters. Synaptotagmin and complexin each partner with SNARE proteins, but until now, scientists could not explain how these three components worked together.

Brunger's team at Stanford University synthesized portions of each component, allowed them to assemble into a complex, and coaxed the complex to form crystals. Then they determined the structure of the complex by measuring how the crystals diffracted x-ray light.

The crystal structure revealed two ways that the proteins interact. The first interaction - between synaptotagmin and the SNARE proteins - is identical to one Brunger and colleagues described in a 2015 paper in Nature. A second, unexpected, interaction revealed a relationship between all three components in the larger complex.

In this three-component interaction, a curly helix of complexin nestles near a helix in a synaptotagmin protein, arranged so that twists of the helices align like the threads of a screw. These helices also rest atop helices of the SNARE complex.

In collaboration with HHMI Investigator Thomas Südhof, the researchers engineered mouse neurons to produce mutated synaptotagmin proteins, which weakened the attraction between the three proteins. Cells with mutated proteins, or ones that lacked complexin, lost the ability to synchronize neurotransmitter release.

Based on their observations, the researchers propose that the three-part interaction locks down the SNARE proteins, so they cannot perform the membrane fusion required for neurotransmitter release until the right moment. Complexin pins the three proteins together, and synaptotagmin might unlock the SNARE proteins when triggered by calcium ions.

"This tripartite interaction intuitively explains the role of the three components," Brunger says. "Now we can explain the cooperation between complexin, synaptotagmin, and the SNARE complex."

There are more than 60 different SNARE proteins in mammalian cells, which, along with various forms of synaptotagmin, are involved in hormone release and other cellular processes. A similar three-part interaction involving SNARE proteins may be used for other calcium-dependent cellular release processes too, Brunger says.


Qiangjun Zhou et al. "The primed SNARE-complexin-synaptotagmin complex for neuronal exocytosis," Nature 548 (August 24, 2017): 420-425, doi: 10.1038/nature23484.

Howard Hughes Medical Institute

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.