Tough stuff: Spider silk enhanced with graphene-based materials

September 13, 2017

Researchers from the Graphene Flagship have demonstrated that graphene-based materials can be used to boost the properties of spider's silk. The silk - produced naturally by the spiders, incorporating graphene and carbon nanotubes (rolled up graphene sheets) introduced in their environment - had enhanced mechanical properties of up to three times the strength and ten times the toughness of the unmodified silks. The work is published in 2D Materials and was a collaboration between the University of Trento, Italy and the Cambridge Graphene Centre at the University of Cambridge, UK, within the Graphene Flagship's Polymer Composites Work Package.

Artificially modified biological materials are an expanding area of research. Natural materials can have properties that cannot be achieved with lab-produced materials, and taking inspiration from nature is an effective research tool

To enhance the spider's silk, the researchers prepared solutions of graphene and carbon nanotubes (CNTs) which were sprayed within the enclosure the spiders were kept in. After allowing the spiders to ingest the graphene and CNT dispersions from their environment, silk was collected from the spiders and tested for graphene/CNT content and mechanical properties.

The silks showed enhanced mechanical properties compared to reference silks collected from the same spiders, with significant increases in the strength, toughness and elasticity of the biocomposite silk threads. The strongest silk threads had a fracture strength of up to 5.4 GPa, over 3 times as strong as the unmodified silks, as well as a tenfold increase of toughness modulus up to 2.1 GPa.

This study opens up new potentials for tailoring the properties of biological materials to enhance their properties for use in novel applications. For example, these artificially modified silks could find use in high-performance or biodegradable textiles such as parachutes or medical dressings.

"Humans have used silkworm silks widely for thousands of years, but recently research has focussed on spider silk, as it has promising mechanical properties. It is among the best spun polymer fibres in terms of tensile strength, ultimate strain, and especially toughness, even when compared to synthetic fibres such as Kevlar," said Nicola Pugno, of the University of Trento.

"We already know that there are biominerals present in the protein matrices and hard tissues of insects, which gives them high strength and hardness in their jaws, mandibles and teeth, for example. So our study looked at whether spider silk's properties could be 'enhanced' by artificially incorporating various different nanomaterials into the silk's biological protein structures," said Pugno.

"This is the highest fibre toughness reported to date, and a strength comparable to that of the strongest carbon fibres or limpet teeth," said Pugno. "These are still early days, but our results are a proof of concept that paves the way to exploiting the naturally efficient spider spinning process to produce reinforced bionic silk fibres, thus further improving one of the most promising strong materials."
Andrea Ferrari, director of the Cambridge Graphene Centre, Science and Technology Officer of the Graphene Flagship, and Chair of the Flagship's management panel, added "The interaction between graphene and related materials and bio-materials is key to broaden their possible applications. This is one of many examples showing potential in this area. This work can help us to design novel composites with enhanced properties, taking inspiration from nature"

Graphene Flagship

Related Graphene Articles from Brightsurf:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.

Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.

How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

Read More: Graphene News and Graphene Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to