Nav: Home

In-utero treatment reverses cleft palate in mice

September 13, 2017

Researchers at University of Utah Health clarified a molecular pathway responsible for the formation of cleft palate and identified a new treatment to reverse this defect in mouse pups in-utero. These findings, published on September 5 in the journal Development, offer a new way to think about cleft development and could potentially yield treatments to prevent this common birth defect in people.

"As a clinician, I understand the devastating consequences of cleft palate," said Rena D'Souza, D.D.S., Ph.D., professor of Dentistry at U of U Health.

Cleft palate is one of the most common birth defects, affecting 6 in 2,651 children born in the United States. The cleft forms when the bony tissue covering the roof of the mouth fails to join during pregnancy. Children with a cleft palate require reconstructive surgery and complex life-long treatments.

D'Souza and her team originally set out to investigate a different tissue: teeth. Using mice as a model, they had planned to clarify the role of two sets of genes - PAX 9 and Wnt genes - in regulating tooth formation. Unexpectedly, their work revealed how the interplay between these two genes at a critical window of development is needed for the palatal shelves to grow and fuse in the midline.

"It was really serendipitous," she said. "For the first time, we can show the involvement of the Wnt pathway during palate fusion."

Like people born with a cleft palate, the two sides of the palate fail to fuse in mice lacking the gene PAX9. At the molecular level, D'Souza found another abnormality. The mice missing this gene had an increase in two genes, called Dkk1 and Dkk2, that block the Wnt signaling pathway.

D'Souza attempted to rectify that change by administering a pharmacological Wnt-based treatment that inhibited Dkk (WAY-262611) intravenously through the mother rat's tail vein during a critical window of the pups' gestation, when palate formation is initiated and ongoing.

Treatment restored palate fusion in all of the pups tested. The drug works by blocking the Dkk genes and restoring the Wnt pathway.

The researchers found no adverse health effects after monitoring the mother mice and their pups exposed to the treatment for 18-months.

Along with cleft defects, PAX9-deficient pups also experience defects in their hind limb, as well as parathyroid and thymus glands. The Wnt-based treatment did not prevent the other defects, and the PAX9-deficient pups soon died after birth. D'Souza believes the premature death is more likely related to abnormal calcium levels, contrary to previous claims that early death was due to malformed palate.

D'Souza acknowledges that more work is necessary to ensure the Wnt-based therapy does not affect other organ systems negatively or produce long-term health problems.

"These seminal findings are exciting for the field, because Dr. D'Souza and her team have opened an interesting door into potential pharmacological therapies," said Ophir Klein, M.D., Ph.D., Chief of Genetics at the University of California San Francisco. Klein, who is not an author on the study, believes it presents a new strategy for the treatment of single-gene disorders in humans, which can be exploited for new approaches to reverse these defects in humans.

D'Souza believes these findings offer some babies born with cleft palate something that was missing before, hope.

"Clearly, there is more work to be done prior to implementation for humans, but it seems feasible to translate this research into Wnt-based treatments for people," she said. Future work is necessary to investigate if it is safe and effective to deliver a drug to human babies in-utero or directly to newborns with palate defects.

-end-

D'Souza conducted this work along with Shihai Jia, Jing Zhou, Christopher Fanelli, and Yinshen Wee at the U of U Health, as well as John Bonds and Gabriele Mues at Texas A&M University and Pascal Schneider at the University of Lausanne, Switzerland.

The research received funding from the National Institutes of Health National Institute of Dental and Craniofacial Research and the Swiss National Science Foundation.

University of Utah Health

Related Genes Articles:

Insomnia genes found
An international team of researchers has found, for the first time, seven risk genes for insomnia.
Genes affecting our communication skills relate to genes for psychiatric disorder
By screening thousands of individuals, an international team led by researchers of the Max Planck Institute for Psycholinguistics, the University of Bristol, the Broad Institute and the iPSYCH consortium has provided new insights into the relationship between genes that confer risk for autism or schizophrenia and genes that influence our ability to communicate during the course of development.
The fate of Neanderthal genes
The Neanderthals disappeared about 30,000 years ago, but little pieces of them live on in the form of DNA sequences scattered through the modern human genome.
Face shape is in the genes
Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a study published on Aug.
Study finds hundreds of genes and genetic codes that regulate genes tied to alcoholism
Using rats carefully bred to either drink large amounts of alcohol or to spurn it, researchers at Indiana and Purdue universities have identified hundreds of genes that appear to play a role in increasing the desire to drink alcohol.
Reading between the genes
For a long time dismissed as 'junk DNA,' we now know that also the regions between the genes fulfill vital functions.
The silence of the genes
Research led by Dr. Keiji Tanimoto from the University of Tsukuba, Japan, has brought us closer to understanding the mechanisms underlying the phenomenon of genomic imprinting.
Why some genes are highly expressed
The DNA in our cells is folded into millions of small packets, like beads on a string, allowing our two-meter linear DNA genomes to fit into a nucleus of only about 0.01 mm in diameter.
Activating genes on demand
A new approach developed by Harvard geneticist George Church, Ph.D., can help uncover how tandem gene circuits dictate life processes, such as the healthy development of tissue or the triggering of a particular disease, and can also be used for directing precision stem cell differentiation for regenerative medicine and growing organ transplants.
Controlling genes with light
Researchers at Duke University have demonstrated a new way to activate genes with light, allowing precisely controlled and targeted genetic studies and applications.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?  Through newly unearthed archival tape, we hear Sipple himself grapple with some of the most vexing topics of his day and ours - privacy, identity, the freedom of the press - not to mention the bonds of family and friendship.  Reported by Latif Nasser and Tracie Hunte. Produced by Matt Kielty, Annie McEwen, Latif Nasser and Tracie Hunte. Special thanks to Jerry Pritikin, Michael Yamashita, Stan Smith, Duffy Jennings; Ann Dolan, Megan Filly and Ginale Harris at the Superior Court of San Francisco; Leah Gracik, Karyn Hunt, Jesse Hamlin, The San Francisco Bay Area Television Archive, Mike Amico, Jennifer Vanasco and Joey Plaster. Support Radiolab today at Radiolab.org/donate.
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.