Nav: Home

Berkeley Lab scientists map key DNA protein complex at near-atomic resolution

September 13, 2017

Chalking up another success for a new imaging technology that has energized the field of structural biology, researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) obtained the highest resolution map yet of a large assembly of human proteins that is critical to DNA function.

The scientists, who are reporting their achievement Sept. 13 in an advanced online publication of the journal Nature, used cryo-electron microscopy (cryo-EM) to resolve the 3-D structure of a protein complex called transcription factor IIH (TFIIH) at 4.4 angstroms, or near-atomic resolution. This protein complex is used to unzip the DNA double helix so that genes can be accessed and read during transcription or repair.

"When TFIIH goes wrong, DNA repair can't occur, and that malfunction is associated with severe cancer propensity, premature aging, and a variety of other defects," said study principal investigator Eva Nogales, faculty scientist at Berkeley Lab's Molecular Biophysics and Integrated Bioimaging Division. "Using this structure, we can now begin to place mutations in context to better understand why they give rise to misbehavior in cells."

TFIIH's critical role in DNA function has made it a prime target for research, but it is considered a difficult protein complex to study, especially in humans.

Advanced technology needed to map complex protein

"As organisms get more complex, these proteins do too, taking on extra bits and pieces needed for regulatory functions at many different levels," said Nogales, who is also a UC Berkeley professor of molecular and cell biology and a Howard Hughes Medical Institute investigator. "The fact that we resolved this protein structure from human cells makes this even more relevant to disease research. There's no need to extrapolate the protein's function based upon how it works in other organisms."

Biomolecules like proteins are typically imaged using X-ray crystallography, but that method requires a large amount of stable sample for the crystallization process to work. The challenge with TFIIH is that it is hard to produce and purify in large enough quantities, and once obtained, it may not form crystals suitable for X-ray diffraction.

Enter cryo-EM, which can work even when sample amounts are very small. Electrons are sent through purified samples that have been flash-frozen at ultracold temperatures to prevent crystalline ice from forming.

Cryo-EM has been around for decades, but major advances over the past five years have led to a quantum leap in the quality of high-resolution images achievable with this technique.

"When your goal is to get resolutions down to a few angstroms, the problem is that any motion gets magnified," said study lead author Basil Greber, a UC Berkeley postdoctoral fellow at the California Institute for Quantitative Biosciences (QB3). "At high magnifications, the slight movement of the specimen as electrons move through leads to a blurred image."

From single pictures to movies

The researchers credit the explosive growth in cryo-EM to advanced detector technology that Berkeley Lab engineer Peter Denes helped develop. Instead of a single picture taken for each sample, the direct detector camera shoots multiple frames in a process akin to recording a movie. The frames are then put together to create a high-resolution image. This approach resolves the blur from sample movement. The improved images contain higher quality data, and they allow researchers to study the sample in multiple states, as they exist in the cell.

Since shooting a movie generates far more data than a single frame, and thousands of movies are being collected during a microscopy session, the researchers needed the processing punch of supercomputers at the National Energy Research Scientific Computing Center (NERSC) at Berkeley Lab. The output from these computations was a 3-D map that required further interpretation.

"When we began the data processing, we had 1.5 million images of individual molecules to sort through," said Greber. "We needed to select particles that are representative of an intact complex. After 300,000 CPU hours at NERSC, we ended up with 120,000 images of individual particles that were used to compute the 3-D map of the protein."

To obtain an atomic model of the protein complex based on this 3-D map, the researchers used PHENIX (Python-based Hierarchical ENvironment for Integrated Xtallography), a software program whose development is led by Paul Adams, director of Berkeley Lab's Molecular Biophysics and Integrated Bioimaging Division and a co-author of this study.

Not only does this structure help with basic understanding of DNA repair, the information could be used to help visualize how specific molecules are binding to target proteins in drug development.

"In studying the physics and chemistry of these biological molecules, we're often able to determine what they do, but how they do it is unclear," said Nogales. "This work is a prime example of what structural biologists do. We establish the framework for understanding how the molecules function. And with that information, researchers can develop finely targeted therapies with more predictive power."

-end-

Other co-authors on this study are Pavel Afonine and Thi Hoang Duong Nguyen, both of whom have joint appointments at Berkeley Lab and UC Berkeley; and Jie Fang, a researcher at the Howard Hughes Medical Institute.

NERSC is a DOE Office of Science User Facility located at Berkeley Lab. In addition to NERSC, the researchers used the Lawrencium computing cluster at Berkeley Lab. This work was funded by the National Institute of General Medical Sciences and the Swiss National Science Foundation.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Lawrence Berkeley National Laboratory

Related Dna Repair Articles:

Researchers uncover new instruction manual to repair broken DNA
Researchers have discovered how the Rad52 protein is a crucial player in RNA-dependent DNA repair.
The role of the protein Rrm3 in the repair of breaks in DNA during replication
A research group from the University of Seville has reached this result by using the yeast Saccharomyces cerevisiae as a model organism.
Structural knowledge of the DNA repair complex
New Danish research provides mechanistic insight into how DNA is monitored and repaired if damage occurs.
Research finds enzymes essential for DNA repair
Scientists at The Australian National University and Heidelberg University in Germany have found an essential component in the DNA repair process which could open the door to the development of new cancer drugs.
Initiating DNA Repair
A research team has discovered a protein that may serve as a first responder that sets in motion a cascade of molecular activity to repair damaged DNA.
CRISPR-Cas9 breaks genes better if you disrupt DNA repair
UC Berkeley research shows that the popular gene-editing tool CRISPR-Cas9 competes with DNA repair, continually cutting what repair enzymes fix until the enzymes make a mistake, resulting in a broken gene.
New knowledge about DNA repair can be turned into cancer inhibitors
Researchers at the University of Copenhagen have discovered a molecular mechanism that reads so-called epigenetic information and boosts repair of lesions in our DNA.
Research explains the role of the gene BRCA1 in DNA repair
Scientists at the University of Birmingham are a step closer to understanding the role of the gene BRCA1.
Spotting DNA repair genes gone awry
Researchers led by Ludwig Cancer Research scientist Richard Kolodner have developed a new technique for sussing out the genes responsible for helping repair DNA damage that, if left unchecked, can lead to certain cancers.
Gene switch may repair DNA and prevent cancer
New discoveries are bringing scientists closer to understanding how DNA repairs itself with a chemical modification which, when absent, can lead to tumor formation.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?  Through newly unearthed archival tape, we hear Sipple himself grapple with some of the most vexing topics of his day and ours - privacy, identity, the freedom of the press - not to mention the bonds of family and friendship.  Reported by Latif Nasser and Tracie Hunte. Produced by Matt Kielty, Annie McEwen, Latif Nasser and Tracie Hunte. Special thanks to Jerry Pritikin, Michael Yamashita, Stan Smith, Duffy Jennings; Ann Dolan, Megan Filly and Ginale Harris at the Superior Court of San Francisco; Leah Gracik, Karyn Hunt, Jesse Hamlin, The San Francisco Bay Area Television Archive, Mike Amico, Jennifer Vanasco and Joey Plaster. Support Radiolab today at Radiolab.org/donate.
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.