Nav: Home

UChicago scientists create alternate evolutionary histories in a test tube

September 13, 2017

Scientists at the University of Chicago studied a massive set of genetic variants of an ancient protein, discovering a myriad of other ways that evolution could have turned out and revealing a central role for chance in evolutionary history.

The study, published this week in Nature by University of Chicago graduate student Tyler Starr and his advisor Professor Joseph Thornton, is the first to subject reconstructed ancestral proteins to deep mutational scanning -- a state-of-the-art technique for characterizing massive libraries of protein variants. The authors' strategy allowed them to compare the path that evolution actually took in the deep past to the millions of alternative routes that could have been taken, but were not.

Starting with a resurrected version of an ancient protein that evolved a new function some 500 million years ago - a function critical to human biology today -- the researchers synthesized a massive library of genetic variants and used deep mutational scanning to analyze their functions. They found more than 800 different ways that the protein could have evolved to carry out the new function as well, or better than, the one that evolved historically.

The researchers showed that chance mutations early in the protein's history played a key role in determining which ones could occur later. As a result, the specific outcome of evolution depended critically on the way a serial chain of chance events unfolded.

"By comparing what happened in history to all the other paths that could have produced the same result, we saw how idiosyncratic evolution is," said Tyler Starr, a graduate student in biochemistry and molecular biology at UChicago, who performed the paper's experiments. "People often assume that everything in biology is perfectly adapted for its function. We found that what evolved was just one possibility out of many that were just as good, or even better, functionally than what we happened to end up with today."

Molecular time travel

Over the last 15 years, Joe Thornton, PhD, senior author on the new study and a professor of ecology and evolution and human genetics at UChicago, led research that pioneered "molecular time travel" using ancestral protein reconstruction. In 2013, his team resurrected and analyzed the functions of the ancestors of a family of proteins called steroid hormone receptors, which mediate the effects of hormones like testosterone and estrogen on sexual reproduction, development, physiology, and cancer. The body's various receptors recognize different hormones and, in turn, activate the expression of different target genes, which they accomplish by binding specifically to DNA sequences called response elements near those targets.

Thornton's group inferred the genetic sequences of ancient receptor proteins by statistically working their way back down the tree of life from a database of hundreds of present-day receptor sequences. They synthesized genes corresponding to these ancient proteins, expressed them in the lab, and measured their functions.

They found that the ancestor of the family behaved like an estrogen receptor - recognizing only estrogens and binding to estrogen response elements - but during one specific interval of history, they evolved into a descendant group capable of recognizing other steroid hormones and binding to a new class of response elements. The researchers found that three key mutations before the emergence of vertebrate animals caused the ancestral receptor to evolve its ability to bind to the new target sequences.

That work set the stage for the current study. Knowing precisely how evolution played out in the past, Thornton's group asked: Was this the only evolutionary path to evolving the new function? Was it the most effective one, or the easiest to achieve? Or was it simply one of many possibilities?

Alternate histories

Starr began working on the project during his first year as a graduate student, developing the technique to assess massive numbers of variants of the ancestral receptor for their ability to bind the new response element. First, he engineered strains of yeast in which the ancestral or new response elements drive expression of a fluorescent reporter gene. He then synthesized a library of ancestral proteins containing all possible combinations of amino acids at the four key sites in the receptor that recognize DNA - 160,000 in all, comprising all possible evolutionary paths that this critical part of the protein could have followed - and introduced this library into the engineered yeast. He sorted hundreds of millions of yeast cells by their fluorescence using a laser-driven device, and then used high-throughput sequencing to associate each receptor variant with its ability to carry out the ancestral function and the new function.

Most of the variants failed to function at all, and some maintained the ancestral function. But Starr found 828 new versions of the protein that could carry out the new function as well, or better than, the one that evolved during history. Remarkably, evolution could have accessed many of these even more easily than the historical "solution," but it happened not to, apparently wandering around the space of possible mutations until it arrived at the version of the protein in our bodies today.

"We all share the same gene sequence for this protein, so it might seem like evolutionary destiny, as if we've arrived at the best possible version. But there are hundreds of other directions that evolution could just as well have taken," Thornton said. "There's nothing special about the history that happened, except that a few chance steps brought us to this singular chance outcome."

Thornton said that deep mutational scanning will be a powerful tool for evolutionary biologists, geneticists and biochemists, and he looks forward to using the approach on successive ancestors at different points in history to see how the set of possible outcomes changed through time.

"We have a molecular time machine to go back to the past, and once we're there, we can simultaneously follow every alternate history that could possibly have played out," Thornton said. "It's a molecular version of every evolutionary biologist's dream."

The study, "Alternate evolutionary histories in the sequence space of an ancient protein," was supported by the National Institutes of Health and the National Science Foundation. Lora Picton, a former research scientist in Thornton's lab at the University of Chicago, was also co-author.
-end-
About the University of Chicago Medicine

The University of Chicago Medicine & Biological Sciences is one of the nation's leading academic medical institutions. It comprises the Pritzker School of Medicine, a top 10 medical school in the nation; the University of Chicago Biological Sciences Division; and the University of Chicago Medical Center, which recently opened the Center for Care and Discovery, a $700 million specialty medical facility. Twelve Nobel Prize winners in physiology or medicine have been affiliated with the University of Chicago Medicine.

Visit our research blog at sciencelife.uchospitals.edu and our newsroom at uchospitals.edu/news.

Twitter @UChicagoMed, @ScienceLife
Facebook.com/UChicagoMed

University of Chicago Medical Center

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Evolution
by Douglas J. Futuyma (Author), Mark Kirkpatrick (Author)

Evolution: The Human Story, 2nd Edition
by Dr. Alice Roberts (Author)

Why Evolution Is True
by Jerry A. Coyne (Author)

Evolution: A Visual Record
by Robert Clark (Author)

Evolution (Second Edition)
by Carl T. Bergstrom (Author), Lee Alan Dugatkin (Author)

Evolution: Becoming A Criminal
by Chas Allen (Author)

Evolution: The Cutting-Edge Guide to Breaking Down Mental Walls and Building the Body You've Always Wanted
by Joe Manganiello (Author)

Evolutions: Fifteen Myths That Explain Our World
by Oren Harman (Author)

Evolution: The Human Story
by DK Publishing (Author)

Evolution: Making Sense of Life
by Carl Zimmer (Author), Douglas J. Emlen (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Why We Hate
From bullying to hate crimes, cruelty is all around us. So what makes us hate? And is it learned or innate? This hour, TED speakers explore the causes and consequences of hate — and how we can fight it. Guests include reformed white nationalist Christian Picciolini, CNN commentator Sally Kohn, podcast host Dylan Marron, and writer Anand Giridharadas.
Now Playing: Science for the People

#483 Wild Moms
This week we're talking about what it takes to be a mother in the wild, and how how human moms compare to other moms in the animal kingdom. We're spending an hour with Dr. Carin Bondar, prolific science communicator and author. We'll be discussing a myriad of stories from her latest book, "Wild Moms: Motherhood in the Animal Kingdom", covering the exciting, stressful and even sinister sides of motherhood.