Nav: Home

'The dark side' of quantum computers

September 13, 2017

The era of fully fledged quantum computers threatens to destroy internet security as we know it. Researchers are in a race against time to prepare new cryptographic techniques before the arrival of quantum computers, as cryptographers Tanja Lange (Eindhoven University of Technology, the Netherlands) and Daniel J. Bernstein (University of Illinois at Chicago, USA) describe today in the journal Nature. In their publication they analyze the options available for this so-called post-quantum cryptography.

The expectation is that quantum computers will be built some time after 2025. Such computers make use of quantum-mechanical properties and can therefore solve some particular problems much faster than our current computers. This will be useful for calculating models for weather forecasts or developing new medicine. However, these operations also affect protection of data using RSA and ECC. With today's technologies these systems will not be broken in a hundred years but a quantum computer will break these within days if not hours.

Sensitive data in the open

Without protection a lot of sensitive information will be out in the open, even data from years back. "An attacker can record our secure communication today and break it with a quantum computer years later. All of today's secrets will be lost," warns Tanja Lange, professor of Cryptology at Eindhoven University of Technology. This concerns private data, bank and health records, but also state secrets. Lange saw the importance of alternative systems already back in 2006 and is busy with creating awareness and developing new systems. "Fairly recently we're seeing an uptake of post-quantum cryptography in the security agencies, e.g., the NSA, and companies start demanding solutions."

Research consortium

Lange leads the research consortium PQCRYPTO consisting of eleven universities and companies. PQCRYPTO started in 2015 with 3.9 million euro funding from the European Commission to develop new cryptographic techniques. "This might seem like a lot of money, but is a factor of 100 less than what goes into building quantum computers." says Lange. She cautions that it is important to strengthen research in cryptography. "Bringing cryptographic techniques to the end user takes often another 15 to 20 years, after development and standardization."

Shor's algorithm

In their Nature publication Lange and Bernstein explain that a certain quantum algorithm, namely Shor's algorithm, breaks all cryptographic techniques that are currently used to establish secure connections on the Internet. Candidates for post-quantum cryptography can roughly be categorized into two types: they are either very well understood and confidence-inspiring but require a lot of bandwidth or they are more convenient to use but provide more questionable security.

Nature

The publication appears in an issue of Nature with special attention to topics related to quantum computers: from different candidates of elementary building blocks of quantum computers till, e.g., the development of new algorithms. The journal invited Lange to write the article on post-quantum cryptography.

-end-



Eindhoven University of Technology

Related Quantum Computers Articles:

Study takes step toward mass-producible quantum computers
Study takes step toward mass-producible quantum computers.
Testing quantum field theory in a quantum simulator
Quantum field theories are often hard to verify in experiments.
Refrigerator for quantum computers discovered
Researchers at Aalto University have invented a quantum-circuit refrigerator, which can reduce errors in quantum computing.
New quantum liquid crystals may play role in future of computers
First 3-D quantum liquid crystals may have applications in quantum computing.
'Virtual' interferometers may overcome scale issues for optical quantum computers
A team of researchers from RMIT, the University of Sydney and UTS have devised an entirely new way of implementing large-scale interferometers that will dramatically miniaturize optical processing circuitry.
Further improvement of qubit lifetime for quantum computers
An international team of scientists has succeeded in making further improvements to the lifetime of superconducting quantum circuits.
Construction of practical quantum computers radically simplified
Scientists at the University of Sussex have invented a ground-breaking new method that puts the construction of large-scale quantum computers within reach of current technology.
New quantum states for better quantum memories
How can quantum information be stored as long as possible?
A new class of materials could realize quantum computers
Scientists at EPFL and PSI have discovered a new class of materials that can prove ideal for the implementation of spintronics.
New 3-D wiring technique brings scalable quantum computers closer to reality
Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.