'The dark side' of quantum computers

September 13, 2017

The era of fully fledged quantum computers threatens to destroy internet security as we know it. Researchers are in a race against time to prepare new cryptographic techniques before the arrival of quantum computers, as cryptographers Tanja Lange (Eindhoven University of Technology, the Netherlands) and Daniel J. Bernstein (University of Illinois at Chicago, USA) describe today in the journal Nature. In their publication they analyze the options available for this so-called post-quantum cryptography.

The expectation is that quantum computers will be built some time after 2025. Such computers make use of quantum-mechanical properties and can therefore solve some particular problems much faster than our current computers. This will be useful for calculating models for weather forecasts or developing new medicine. However, these operations also affect protection of data using RSA and ECC. With today's technologies these systems will not be broken in a hundred years but a quantum computer will break these within days if not hours.

Sensitive data in the open

Without protection a lot of sensitive information will be out in the open, even data from years back. "An attacker can record our secure communication today and break it with a quantum computer years later. All of today's secrets will be lost," warns Tanja Lange, professor of Cryptology at Eindhoven University of Technology. This concerns private data, bank and health records, but also state secrets. Lange saw the importance of alternative systems already back in 2006 and is busy with creating awareness and developing new systems. "Fairly recently we're seeing an uptake of post-quantum cryptography in the security agencies, e.g., the NSA, and companies start demanding solutions."

Research consortium

Lange leads the research consortium PQCRYPTO consisting of eleven universities and companies. PQCRYPTO started in 2015 with 3.9 million euro funding from the European Commission to develop new cryptographic techniques. "This might seem like a lot of money, but is a factor of 100 less than what goes into building quantum computers." says Lange. She cautions that it is important to strengthen research in cryptography. "Bringing cryptographic techniques to the end user takes often another 15 to 20 years, after development and standardization."

Shor's algorithm

In their Nature publication Lange and Bernstein explain that a certain quantum algorithm, namely Shor's algorithm, breaks all cryptographic techniques that are currently used to establish secure connections on the Internet. Candidates for post-quantum cryptography can roughly be categorized into two types: they are either very well understood and confidence-inspiring but require a lot of bandwidth or they are more convenient to use but provide more questionable security.


The publication appears in an issue of Nature with special attention to topics related to quantum computers: from different candidates of elementary building blocks of quantum computers till, e.g., the development of new algorithms. The journal invited Lange to write the article on post-quantum cryptography.

Eindhoven University of Technology

Related Quantum Computers Articles from Brightsurf:

Optical wiring for large quantum computers
Researchers at ETH have demonstrated a new technique for carrying out sensitive quantum operations on atoms.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

A new technique prevents errors in quantum computers
A paper recently published in Nature presents a protocol allowing for the error detection and the protection of quantum processors in case of qubit loss.

New method prevents quantum computers from crashing
Quantum information is fragile, which is why quantum computers must be able to correct errors.

Natural radiation can interfere with quantum computers
Radiation from natural sources in the environment can limit the performance of superconducting quantum bits, known as qubits.

New model helps to describe defects and errors in quantum computers
A summer internship in Bilbao, Spain, has led to a paper in the journal Physical Review Letters for Jack Mayo, a Master's student at the University of Groningen, the Netherlands.

The first intuitive programming language for quantum computers
Several technical advances have been achieved recently in the pursuit of powerful quantum computers.

Hot qubits break one of the biggest constraints to practical quantum computers
A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing.

Future quantum computers may pose threat to today's most-secure communications
Quantum computers that are exponentially faster than any of our current classical computers and are capable of code-breaking applications could be available in 12 to 15 years, posing major risks to the security of current communications systems, according to a new RAND Corporation report.

Novel error-correction scheme developed for quantum computers
Experimental quantum computers are plagued with errors. Here Dr Arne Grimsmo from the University of Sydney and colleagues from RMIT and the University of Queensland offer a novel method to reduce errors in a scheme applicable across different types of quantum hardware.

Read More: Quantum Computers News and Quantum Computers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.