Nav: Home

New supernova analysis reframes dark energy debate

September 13, 2017

The accelerating expansion of the Universe may not be real, but could just be an apparent effect, according to new research published in the journal Monthly Notices of the Royal Astronomical Society. The new study--by a group at the University of Canterbury in Christchurch, New Zealand--finds the fit of Type Ia supernovae to a model universe with no dark energy to be very slightly better than the fit to the standard dark energy model.

Dark energy is usually assumed to form roughly 70% of the present material content of the Universe. However, this mysterious quantity is essentially a place-holder for unknown physics.

Current models of the Universe require this dark energy term to explain the observed acceleration in the rate at which the Universe is expanding. Scientists base this conclusion on measurements of the distances to supernova explosions in distant galaxies, which appear to be farther away than they should be if the Universe's expansion were not accelerating.

However, just how statistically significant this signature of cosmic acceleration is has been hotly debated in the past year. The previous debate pitted the standard Lambda Cold Dark Matter (ΛCDM) cosmology against an empty universe whose expansion neither accelerates nor decelerates. Both of these models though assume a simplified 100 year old cosmic expansion law--Friedmann's equation.

Friedmann's equation assumes an expansion identical to that of a featureless soup, with no complicating structure. However, the present Universe actually contains a complex cosmic web of galaxy clusters in sheets and filaments that surround and thread vast empty voids.

Prof David Wiltshire, who led the study from the University of Canterbury in Christchurch, said, "The past debate missed an essential point; if dark energy does not exist then a likely alternative is that the average expansion law does not follow Friedmann's equation."

Rather than comparing the standard ΛCDM cosmological model with an empty universe, the new study compares the fit of supernova data in ΛCDM to a different model, called the 'timescape cosmology'. This has no dark energy. Instead, clocks carried by observers in galaxies differ from the clock that best describes average expansion once the lumpiness of structure in the Universe becomes significant. Whether or not one infers accelerating expansion then depends crucially on the clock used.

The timescape cosmology was found to give a slightly better fit to the largest supernova data catalogue than the ΛCDM cosmology. Unfortunately the statistical evidence is not yet strong enough to rule definitively in favour of one model or the other, but future missions such as the European Space Agency's Euclid satellite will have the power to distinguish between the standard cosmology and other models, and help scientists to decide whether dark energy is real or not.

Deciding that not only requires more data, but also better understanding properties of supernovae which currently limit the precision with which they can be used to measure distances. On that score, the new study shows significant unexpected effects which are missed if only one expansion law is applied. Consequently, even as a toy model the timescape cosmology provides a powerful tool to test our current understanding, and casts new light on our most profound cosmic questions.

-end-



Royal Astronomical Society

Related Supernova Articles:

The big star that couldn't become a supernova
For the first time in history, astronomers have been able to watch as a dying star was reborn as a black hole.
Seeing quadruple: Four images of the same supernova, a rare find
Galaxies bend light through an effect called gravitational lensing that helps astronomers peer deeper into the cosmos.
Explosive material: The making of a supernova
Pre-supernova stars may show signs of instability for months before the big explosion
Search for stellar survivor of a supernova explosion
Astronomers have used the NASA/ESA Hubble Space Telescope to observe the remnant of a supernova explosion in the Large Magellanic Cloud.
Wispy remains of supernova explosion hide possible 'survivor'
This image, taken with NASA's Hubble Space Telescope, shows the supernova remnant SNR 0509-68.7, also known as N103B.
The dawn of a new era for Supernova 1987a
Three decades ago, astronomers spotted one of the brightest exploding stars in more than 400 years.
The supernova that wasn't: A tale of 3 cosmic eruptions
Long-term observations with the Hubble Space Telescope revealed that Eta Carinae, a very massive star system that has puzzled astronomers since it erupted in a supernova-like event in the mid 19th century, has a past that's much more violent than they thought.
Blue is an indicator of first star's supernova explosions
An international collaboration led by the Kavli Institute for the Physics and Mathematics of the Universe have discovered that the color of supernovae during a specific phase could be an indicator for detecting the most distant and oldest supernovae in the Universe -- more than 13 billion years old.
Nearby supernova ashes continue to rain on Earth
Traces of 60Fe detected in space indicate that a nearby supernova occurred within the last few million years.
Supernova iron found on the moon
Approximately two million years ago a star exploded in a supernova close to our solar system: Its traces can still be found today in the form of an iron isotope found on the ocean floor.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?  Through newly unearthed archival tape, we hear Sipple himself grapple with some of the most vexing topics of his day and ours - privacy, identity, the freedom of the press - not to mention the bonds of family and friendship.  Reported by Latif Nasser and Tracie Hunte. Produced by Matt Kielty, Annie McEwen, Latif Nasser and Tracie Hunte. Special thanks to Jerry Pritikin, Michael Yamashita, Stan Smith, Duffy Jennings; Ann Dolan, Megan Filly and Ginale Harris at the Superior Court of San Francisco; Leah Gracik, Karyn Hunt, Jesse Hamlin, The San Francisco Bay Area Television Archive, Mike Amico, Jennifer Vanasco and Joey Plaster. Support Radiolab today at Radiolab.org/donate.
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.