Nav: Home

UBC research discovers a chemical-free way to keep apples fresher longer

September 13, 2017

An apple a day may keep the doctor away, but the mold on it could make you sick.

Rhiannon Wallace, a PhD candidate at UBC Okanagan's campus, has developed a way to stop, or at least control, blue mold--a pathogen that can rot an apple to its core. Wallace's research has determined that bacteria, originally isolated from cold Saskatchewan soils, may be the answer to preventing mold growth and apple rot while the fruit is in storage or transport.

"The majority of postharvest fungal pathogens are opportunistic," explains Wallace, who is working with UBC Biology Prof. Louise Nelson. "If a fruit is physically damaged, it is at an increased risk of rotting during storage. So a tiny blemish on the fruit from harvest or handling can turn into a conduit for attack by fungal pathogens and subsequently result in the development of mold."

The fungal pathogen Penicillium expansum, also known as blue mold, destroys millions of stored apples each year. Post-harvest rot can result in yield losses of up to 20 per cent in developed countries such as Canada, while developing countries can lose up to 50 per cent of the crop, Wallace says.

The goal of her research is to reduce the amount of produce lost due to post-harvest blue mold. Traditionally, post-harvest rot has been controlled with chemical fungicides, but Wallace says these treatments have become less effective as the pathogen has developed resistance and there is consumer pushback to the chemicals. The research by Wallace and Nelson aims to provide a safer and more sustainable alternative to fungicides.

Wallace suggests the solution may lie in a particular bacterium specific to Saskatchewan soil. Pseudomonas fluorescens, due to its prairie roots, can survive in cold storage--a characteristic that is key to dealing with cold-stored produce like apples.

During tests conducted at the British Columbia Tree Fruits Cooperative storage facility in the Okanagan, Wallace determined that these bacteria can prevent blue mold from growing on McIntosh and Spartan apples while in storage. In addition, during these experiments, the bacteria provided control of blue mold on apples that was comparable to a commercially available biological control agent and a chemical fungicide.

"What is novel about our research is that we show the bacterial isolates we tested have an array of mechanisms to inhibit or kill Penicillium expansum (blue mold) on apples while fungicides generally act only by a single mode," Wallace says. "These findings suggest that the development of resistance by blue mold against our soil bacteria is unlikely."

She does note that while all three isolates of P. fluorescens tested provided control of blue mold, the level of control provided by each isolate varied with apple variety.

-end-

Wallace's research, supported by the Canadian Horticulture Council and Agriculture and Agri-Food Canada, was recently published in the journal Postharvest Biology and Technology. Further support came from the BC Tree Fruits Cooperative and Agriculture Canada's Summerland Research and Development Centre.

University of British Columbia Okanagan campus

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?  Through newly unearthed archival tape, we hear Sipple himself grapple with some of the most vexing topics of his day and ours - privacy, identity, the freedom of the press - not to mention the bonds of family and friendship.  Reported by Latif Nasser and Tracie Hunte. Produced by Matt Kielty, Annie McEwen, Latif Nasser and Tracie Hunte. Special thanks to Jerry Pritikin, Michael Yamashita, Stan Smith, Duffy Jennings; Ann Dolan, Megan Filly and Ginale Harris at the Superior Court of San Francisco; Leah Gracik, Karyn Hunt, Jesse Hamlin, The San Francisco Bay Area Television Archive, Mike Amico, Jennifer Vanasco and Joey Plaster. Support Radiolab today at Radiolab.org/donate.
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.