Nav: Home

Russian and German physicists developed a mathematical model of trapped atoms and ions

September 13, 2018

It is difficult to study processes at the level of individual atoms and ions at room temperature due to their thermal motion. It causes disturbance that is the reason for considerable inaccuracy of measurements. The main cause of observation errors is the Doppler effect. However, if the atoms are cooled down and therefore the speed of their thermal motion is reduced, this effect can be suppressed.

Atoms can be cooled down using a laser, but it's important to select proper frequency and direction. The same laser can create a so-called trap for cooled down atoms - a standing light wave (i.e. a wave that does not move but fluctuates in one place) keeps the atoms fixed in confined region of space. This trap can be compared to an egg case that prevents the eggs from moving around. Such a trap can be used as a model system for studying various quantum processes - from solid state physics to high energy physics. However, it is quite difficult to give a detailed mathematical description of the systems that consist of trapped quantum particles.

"The two-body problem (e.g. a hydrogen atom or two colliding atoms) is the basis of quantum mechanics. Each body has three coordinates (X, Y, and Z, just like your Maths teacher told you). In free space this problem may be reduced to relative motion of two particles by separation of their center-of-mass. The number of variables left in the problem is now three instead of six. The absence of a preferred direction helps reduce this problem to an even simpler one-dimensional radial equation (i.e. an equation with one variable) by separation of angular variables. But when two quantum particles are trapped, an additional condition appears, which is preferential direction. In this case the problem cannot be reduced to a one-dimensional equation. It becomes two-dimensional if the atoms are identical and six-dimensional if they are distinguishable or if an atom-ionic system is considered. Many scientists are able to solve two-dimensional equations, but three-dimensional ones are already quite a complicated problem for modern numerical mathematics. This is the area where new methods have to be developed," said Vladimir Melezhik, the author of the study, the doctor of science in physics and mathematics from RUDN.

Together with physicists from the University of Hamburg Vladimir Melezhik developed a mathematical method reducing multi-dimensional calculations to a system of one-dimensional equations to simplify and speed up the calculations. The authors used it to describe atomic systems with different parameters (intensity of effective interparticle interaction, initial state population, and particle energy). The method proved to be also applicable to hybrid atom-ionic systems. If not only atoms, but also ions are trapped, new complex quantum effects can be studied. The developed algorithm provides for the calculation of collisions of atoms and ions to each other and the laser trap. In the future such hybrid structures potentially can help to model the elements of quantum computers.
-end-


RUDN University

Related Laser Articles:

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.
Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.
The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.
The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.
Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.
Laser physics: Transformation through light
Laser physicists have taken snapshots of how C60 carbon molecules react to extremely short pulses of intense infrared light.
Laser-induced graphene gets tough, with help
Laser-induced graphene created at Rice University combines with many materials to make tough, conductive composites for wearable electronics, anti-icing, antimicrobial applications, sensors and water treatment.
How molecules teeter in a laser field
When molecules interact with the oscillating field of a laser, an instantaneous, time-dependent dipole is induced.
Laser blasting antimatter into existence
Antimatter is an exotic material that vaporizes when it contacts regular matter.
New laser advances
Lasers are poised to take another step forward: Researchers at Case Western Reserve University, in collaboration with partners around the world, have been able to control the direction of a laser's output beam by applying external voltage.
More Laser News and Laser Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.