Researchers managed to prevent the disappearing of quantum information

September 13, 2018

The properties of quantum mechanics can be utilised, for example, in technology and encrypting messages, but the disadvantage is the occasional disappearing of information. For the first time, a research group consisting of Finnish and Chinese scientists has found a way to fully control the information escaping the qubit.

Quantum mechanics describes the behaviour of minute physical systems, such as photons. Photons are also used as the quantum-mechanical equivalents to classic bits, qubits. Quantum-mechanical properties, such as superpositions and quantum entanglement, can be utilised in technology, effective calculation, and encrypting messages.

- These properties are very fragile and usually disappear rapidly as a result of so-called decoherence and quantum noise. As a result, the information carried by the qubit leaks into the environment and disappears completely. Both in terms of basic research and technological applications, it is vital to understand how quantum information disappears, and to find ways to control the behaviour of quantum systems and prevent the disappearing of information, says University Research Fellow Jyrki Piilo from the Department of Physics and Astronomy of the University of Turku.

For the first time, the research groups of Turku Centre for Quantum Physics at the University of Turku and the University of Science and Technology of China have showed both in theory and experimentally how the information flowing from the qubit into the environment can be controlled. The groups also proved that the disappearing of quantum information can even be prevented in some cases.

- Our work is based on exploring the properties of photons and their careful control in the laboratory. In order to achieve the result, it was crucial to first theoretically understand how to create an adequate connection between the polarisation and frequency of the photon in the beginning, and then implement it in the laboratory using extremely refined and challenging experimental techniques. When the photon serving as the qubit - and its environment - has first been initialised into the right state, it is then possible to arbitrarily control how the information carried by the qubit disappears or is retrieved, and it can even be trapped or protected from disturbances, explains Professor Chuan-Feng Li from the University of Science and Technology of China.

According to Li, the results of the study are significant for basic research and developing quantum technologies.

- Individual photons can now also be used for simulating the behaviour of several other quantum-mechanical systems, including magnetic spin systems. Also, the results provide fundamental information on the behaviour of open quantum systems in different environments. Moreover, the results enable the manufacturing of artificial environments for qubits. These environments are not found elsewhere naturally, but they can be produced in the laboratory, says Piilo.

The researchers from Turku Centre for Quantum Physics at the University of Turku were responsible for the theoretical part of the study, and Professor of Theoretical Physics Sabrina Maniscalco and Doctoral Candidate Henri Lyyra participated in the study alongside Piilo. Professors Chuan-Feng Li and Guang-Can Guo from the University of Science and Technology of China were responsible for the experimental implementation of the study together with their research groups including co-first author Zhao-Di Liu.
-end-


University of Turku

Related Quantum Physics Articles from Brightsurf:

Know when to unfold 'em: Applying particle physics methods to quantum computing
Borrowing a page from high-energy physics and astronomy textbooks, a team of physicists and computer scientists at Berkeley Lab has successfully adapted and applied a common error-reduction technique to the field of quantum computing.

Quantum physics: Physicists successfully carry out controlled transport of stored light
A team of physicists at Mainz University has successfully transported light stored in a quantum memory over a distance of 1.2 millimeters.

New system detects faint communications signals using the principles of quantum physics
Researchers at the National Institute of Standards and Technology (NIST) have devised and demonstrated a system that could dramatically increase the performance of communications networks while enabling record-low error rates in detecting even the faintest of signals.

Quirky response to magnetism presents quantum physics mystery
In a new study just published and highlighted as an Editor's Suggestion in Physical Review Letters, scientists describe the quirky behavior of one such magnetic topological insulator.

Evidence of power: Phasing quantum annealers into experiments from nonequilibrium physics
Scientists at Tokyo Institute of Technology (Tokyo Tech) use commercially available quantum annealers, a type of quantum computer, to experimentally probe the validity of an important mechanism from nonequilibrium physics in open quantum systems.

Adapting ideas from quantum physics to calculate alternative interventions for infection and cancer
Published in Nature Physics, findings from a new study co-led by Cleveland Clinic and Case Western Reserve University teams show for the first time how ideas from quantum physics can help develop novel drug interventions for bacterial infections and cancer.

Quantum physics: Realization of an anomalous Floquet topological system
An international team led by physicists from the Ludwig-Maximilians Universitaet (LMU) in Munich realized a novel genuine time-dependent topological system with ultracold atoms in periodically-driven optical honeycomb lattices.

Quantum physics provides a way to hide ignorance
Students can hide their ignorance and answer questions correctly in an exam without their lack of knowledge being detected by teachers -- but only in the quantum world.

Quantum physics: Physicists develop a new theory for Bose-Einstein condensates
Bose-Einstein condensates are often described as the fifth state of matter: At extremely low temperatures, gas atoms behave like a single particle.

Attosecond physics: Quantum brakes in molecules
Physicists have measured the flight times of electrons emitted from a specific atom in a molecule upon excitation with laser light.

Read More: Quantum Physics News and Quantum Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.