Cancer drug and antidepressants provide clues for treating brain-eating amoeba infections

September 13, 2018

The amoeba Naegleria fowleri is commonly found in warm swimming pools, lakes and rivers. On rare occasions, the amoeba can infect a healthy person and cause severe primary amebic meningoencephalitis, a "brain-eating" disease that is almost always fatal. Other than trial-and-error with general antifungal medications, there are no treatments for the infection.

Researchers at Skaggs School of Pharmacy and Pharmaceutical Sciences at University of California San Diego have now identified three new molecular drug targets in N. fowleri and a number of drugs that are able to inhibit the amoeba's growth in a laboratory dish. Several of these drugs are already approved by the U.S. Food and Drug Administration for other uses, such as antifungal agents, the breast cancer drug tamoxifen and antidepressant Prozac.

Their findings are published September 13 in PLoS Pathogens.

"Not many drugs can cross the blood-brain barrier," said senior author Larissa Podust, PhD, associate professor at Skaggs School of Pharmacy. "Even if a drug can inhibit or kill the amoeba in a dish, it will not work in a host animal if it does not make it into the brain. That's why we started with drugs known for their brain effects." Podust led the study with co-first authors Anjan Debnath, PhD, assistant professor at Skaggs School of Pharmacy, and Wenxu Zhou, PhD, of Texas Tech University.

Podust and team began by investigating N. fowleri's sterol biosynthesis pathway -- a series of enzymes that build the amoeba's outer membrane. They inhibited three of these enzymes to see how it would affect the organism's viability. The researchers found that all three enzymes might make good drug targets. One of these, a sterol isomerase, is similar to a human receptor known to play a role in human neurological conditions, such as addiction, amnesia, pain and depression.

The researchers then tested a number of drugs already known to inhibit these enzymes for their ability to inhibit N. fowleri growth in the lab. All 13 of the new drugs they tested were more potent than miltefosine, an investigational drug currently recommended by the U.S. Centers for Disease Control and Prevention (CDC) for the treatment of primary amebic meningoencephalitis, in combination with other medications.

For example, while it takes 54.5 micromolar (μM) of miltefosine to arrest the growth of half the amoebae growing in a dish, it only took 5.8 μM of tamoxifen and 31.8 μM of Prozac. Tamoxifen and Prozac inhibit two different enzymes in N. fowleri's sterol biosynthesis pathway. When the researchers combined a lower dose of tamoxifen with drugs that inhibit other enzymes in the sterol biosynthesis pathway, they were able to inhibit the growth of 95 percent of N. fowleri. In other words, combination treatment allowed them to inhibit more of the pathogen using lower drug concentrations.

"Drug repurposing is a relevant strategy for this infection because there is little economic incentive for the pharmaceutical industry to develop new drugs to treat these rare diseases," Debnath said. "Already-approved drugs can also lessen the time and expense required to develop a drug from the laboratory to the clinic."

According to the CDC, only four of 143 people known to be infected with N. fowleri in the U.S. from 1962 to 2017 have survived. However, the number of the university laboratories conducting research on N. fowleri is few, partly due to a liability for laboratory safety risks. The Center for Discovery and Innovation in Parasitic Diseases at Skaggs School of Pharmacy and Pharmaceutical Sciences at UC San Diego is home to just one of six university-based laboratories worldwide conducting drug discovery research on live N. fowleri, and, based on current publications, the only university in the U.S. with a mouse model of the infection.
-end-
Additional study co-authors include: Gareth Jennings and Hye Jee Hahn, UC San Diego; Boden H. Vanderloop and W. David Nes, Texas Tech University; and Minu Chaudhuri, Meharry Medical College.

University of California - San Diego

Related Enzymes Articles from Brightsurf:

Bacilli and their enzymes show prospects for several applications
This publication is devoted to the des­cription of different microbial enzymes with prospects for practical application.

Ancient enzymes can contribute to greener chemistry
A research team at Uppsala University has resurrected several billion-year-old enzymes and reprogrammed them to catalyse completely different chemical reactions than their modern versions can manage.

Advances in the production of minor ginsenosides using microorganisms and their enzymes
Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes - BIO Integration https://bio-integration.org/wp-content/uploads/2020/05/bioi20200007.pdf Announcing a new article publication for BIO Integration journal.

Cold-adapted enzymes can transform at room temperature
Enzymes from cold-loving organisms that live at low temperatures, close to the freezing point of water, display highly distinctive properties.

How enzymes build sugar trees
Researchers have used cryo-electron microscopy to elucidate for the first time the structure and function of a very small enzyme embedded in cell membranes.

Energized by enzymes -- nature's catalysts
Scientists at Pacific Northwest National Laboratory are using a custom virtual reality app to design an artificial enzyme that converts carbon dioxide to formate, a kind of fuel.

Mathematical model reveals behavior of cellular enzymes
Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.

While promoting diseases like cancer, these enzymes also cannibalize each other
In diseases like cancer, atherosclerosis, and sickle cell anemia, cathepsins promote their propagation.

Researchers finally grasp the work week of enzymes
Scientists have found a novel way of monitoring individual enzymes as they chomp through fat.

How oxygen destroys the core of important enzymes
Certain enzymes, such as hydrogen-producing hydrogenases, are unstable in the presence of oxygen.

Read More: Enzymes News and Enzymes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.