Brain-inspired computing could tackle big problems in a small way

September 13, 2019

While computers have become smaller and more powerful and supercomputers and parallel computing have become the standard, we are about to hit a wall in energy and miniaturization. Now, Penn State researchers have designed a 2D device that can provide more than yes-or-no answers and could be more brainlike than current computing architectures.

"Complexity scaling is also in decline owing to the non-scalability of traditional von Neumann computing architecture and the impending 'Dark Silicon' era that presents a severe threat to multi-core processor technology," the researchers note in today's (Sept 13) online issue of Nature Communications.

The Dark Silicon era is already upon us to some extent and refers to the inability of all or most of the devices on a computer chip to be powered up at once. This happens because of too much heat generated from a single device. Von Neumann architecture is the standard structure of most modern computers and relies on a digital approach -- "yes" or "no" answers -- where program instruction and data are stored in the same memory and share the same communications channel.

"Because of this, data operations and instruction acquisition cannot be done at the same time," said Saptarshi Das, assistant professor of engineering science and mechanics. "For complex decision-making using neural networks, you might need a cluster of supercomputers trying to use parallel processors at the same time -- a million laptops in parallel -- that would take up a football field. Portable healthcare devices, for example, can't work that way."

The solution, according to Das, is to create brain-inspired, analog, statistical neural networks that do not rely on devices that are simply on or off, but provide a range of probabilistic responses that are then compared with the learned database in the machine. To do this, the researchers developed a Gaussian field-effect transistor that is made of 2D materials -- molybdenum disulfide and black phosphorus. These devices are more energy efficient and produce less heat, which makes them ideal for scaling up systems.

"The human brain operates seamlessly on 20 watts of power," said Das. "It is more energy efficient, containing 100 billion neurons, and it doesn't use von Neumann architecture."

The researchers note that it isn't just energy and heat that have become problems, but that it is becoming difficult to fit more in smaller spaces.

"Size scaling has stopped," said Das. "We can only fit approximately 1 billion transistors on a chip. We need more complexity like the brain."

The idea of probabilistic neural networks has been around since the 1980s, but it needed specific devices for implementation.

"Similar to the working of a human brain, key features are extracted from a set of training samples to help the neural network learn," said Amritanand Sebastian, graduate student in engineering science and mechanics.

The researchers tested their neural network on human electroencephalographs, graphical representation of brain waves. After feeding the network with many examples of EEGs, the network could then take a new EEG signal and analyze it and determine if the subject was sleeping.

"We don't need as extensive a training period or base of information for a probabilistic neural network as we need for an artificial neural network," said Das.

The researchers see statistical neural network computing having applications in medicine, because diagnostic decisions are not always 100% yes or no. They also realize that for the best impact, medical diagnostic devices need to be small, portable and use minimal energy.

Das and colleagues call their device a Gaussian synapse and it is based on a two-transistor setup where the molybdenum disulfide is an electron conductor, while the black phosphorus conducts through missing electrons, or holes. The device is essentially two variable resistors in series and the combination produces a graph with two tails, which matches a Gaussian function.
-end-
Others working on this project were Andrew Pannone, undergraduate in engineering science and mechanics; and Shiva Subbulakshmi, student in electrical engineering at Amrita Vishwa Vidyapeetham, India, and a summer intern in the Das laboratory.

The Air Force Office of Scientific Research supported this work.

Penn State

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.